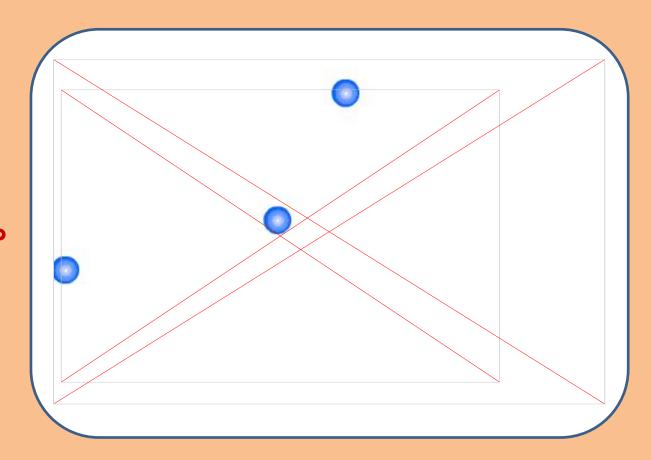
АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВ

три состояния воды

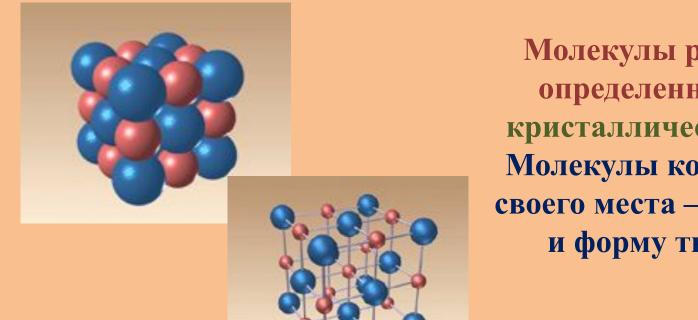
В различных состояниях вещества обладают разными свойствами


Что происходит с молекулами вещества, когда вещество находится в разных агрегатных состояниях?

- какова скорость движения молекул вещества?
- какое расстояние между молекулами?
- каково взаимное расположение молекул?

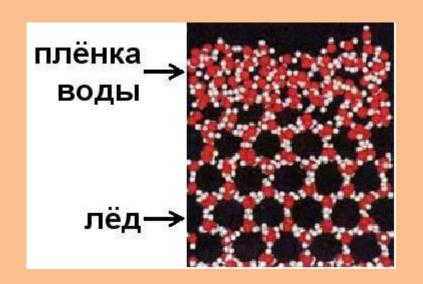
ГАЗ

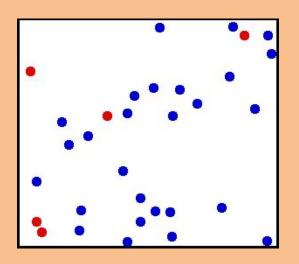
• ЖИДКОСТЬ


ТВЕРДОЕ
 ТЕЛО

СТРОЕНИЕ ВЕЩЕСТВА

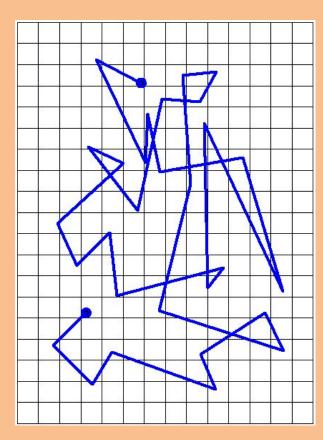
Состояние	Расположение	Движение	Расстояние
вещества	молекул	молекул	между
			молекулами
Твёрдое	В определённом	Колебания около	Меньше
	порядке	определённой	размеров
		точки	молекул
	0000		
Жидкое	беспорядочно	передвижение	Меньше
			размеров
			молекул
			• •
Газообразное	беспорядочно	передвижение	Больше
			размеров
			молекул

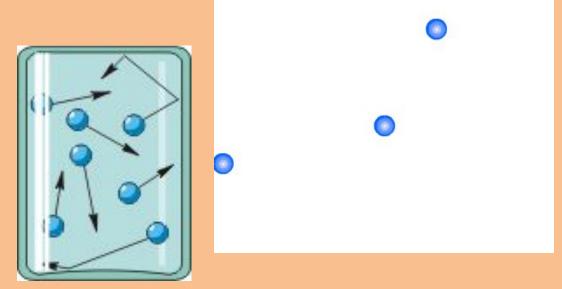

РАСПОЛОЖЕНИЕ МОЛЕКУЛ В ТВЕРДЫХ ТЕЛАХ


Молекулы расположены в определенном порядке — кристаллическая структура. Молекулы колеблются возле своего места — сохраняя объем и форму твердого тела.

Притяжение между молекулами очень сильное

РАСПОЛОЖЕНИЕ МОЛЕКУЛ В ЖИДКОСТЯХ

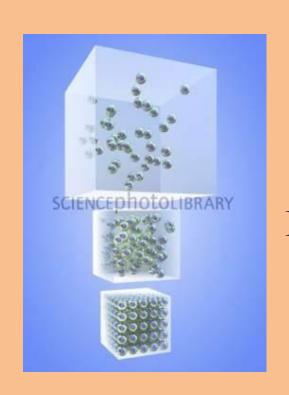




Молекулы расположены близко друг к другу, беспорядочно. Не расходятся на большие расстояния, сохраняя объем жидкости.

Жидкости текучи, трудно сжимаемы из — за действия сил отталкивания между молекулами.

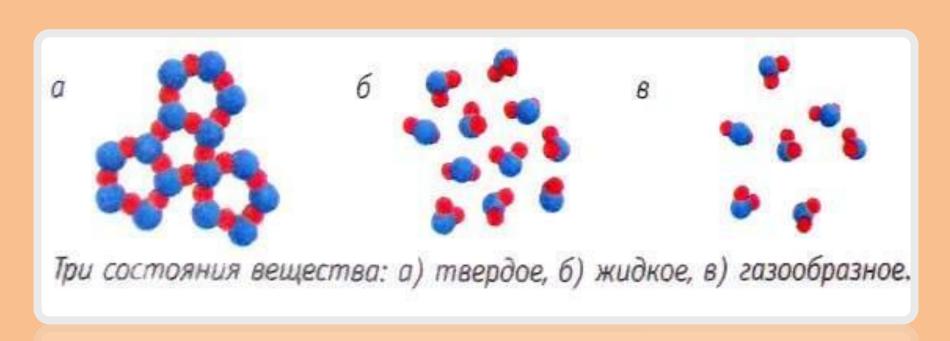
РАСПОЛОЖЕНИЕ МОЛЕКУЛ В ГАЗАХ



Расстояние между молекулами намного больше, чем в жидкостях.

Беспорядочное расположение молекул - силы притяжения слабые — отсутствие постоянного объема и формы у газов.

ОСНОВНЫЕ СВОЙСТВА ТРЕХ СОСТОЯНИЙ ВЕЩЕСТВ

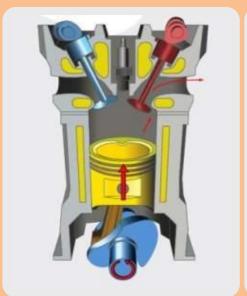

Газы заполняют весь предоставленный объем (все пространство). Хорошо сжимаются и расширяются.

Жидкости принимают форму сосуда. Имеют объем, не имеют форму. Трудно сжимаются.

Твердые тела имеют форму и объем. Трудно деформируются. Имеют кристаллическую структуру.

ОСНОВНОЕ ОТЛИЧИЕ ТРЕХ СОСТОЯНИЙ ВЕЩЕСТВА:

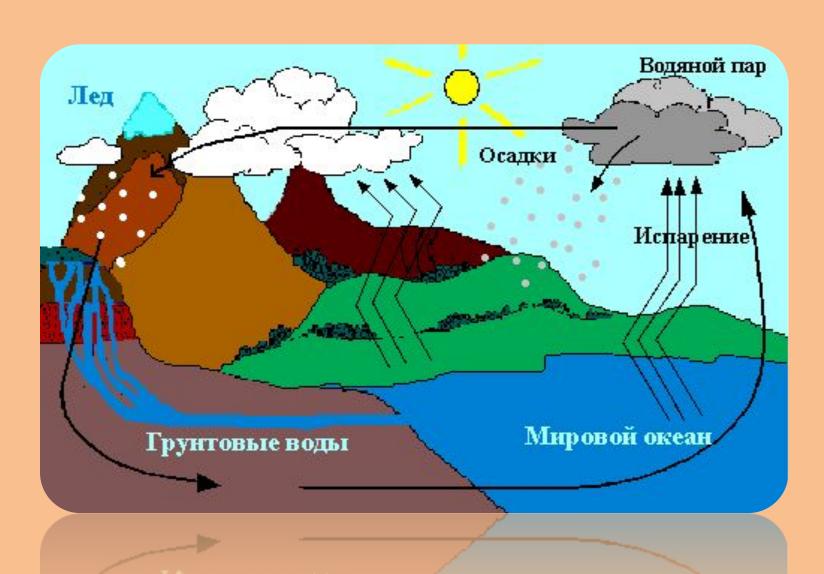
расположение молекул и скорость их движения



ФАЗОВЫЕ ПЕРЕХОДЫ

ПЕРЕХОД ИЗ ОДНОГО СОСТОЯНИЯ В ДРУГОЕ ИСПОЛЬЗУЮТ В ПРАКТИКЕ:

В работе технических устройств: паровой турбине, двигателе внутреннего сгорания

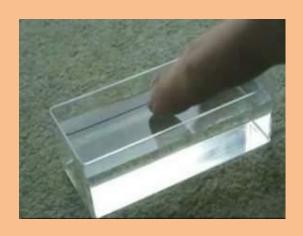


для получения сплавов

ИЗМЕНЕНИЕ АГРЕГАТНЫХ СОСТОЯНИЙ ВОДЫ В ПРИРОДЕ

УСЛОВИЯ ПЕРЕХОДА ВЕЩЕСТВА ИЗ ОДНОГО СОСТОЯНИЯ В ДРУГОЕ:

Изменение температуры сопровождается выделением энергии
Увеличение температуры — нагрев — увеличение внутренней энергии вещества
Уменьшение температуры — охлаждение — уменьшение внутренней энергии вещества


Передавая телу энергию, можно перевести его из одного состояния в другое

КАКИМ БЫВАЕТ ЛЕД?

Горячий лёд

Английский физик Бриджмен показал, что вода под давлением $p \sim 2*10^9$ Па остаётся твёрдой даже при t=76 °C. Это так называемый «горячий лёд - 5». Взять его в руки нельзя, о свойствах этой разновидности льда узнали косвенным образом.

«Горячий лёд» плотнее воды (1050кг/м³), он тонет в воде. Сегодня известно более 10 разновидностей льда с удивительными качествами.

СУХОЙ ЛЁД

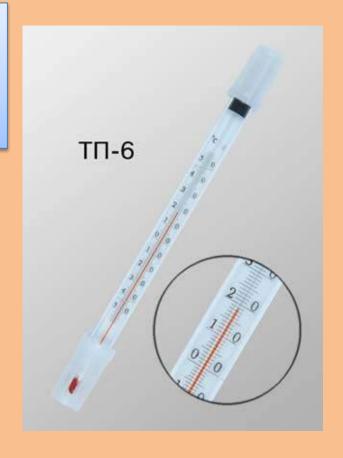
При сгорании угля можно получить не жар, а наоборот, холод. Для этого уголь сжигают в котлах, образующийся дым очищают и улавливают в нём углекислый газ. Его охлаждают и сжимают до давления 7*10⁶ Па. Получается жидкая углекислота. Её хранят в толстостенных баллонах.

При открывании крана жидкая углекислота резко расширяется и охлаждается, превращаясь в *твёрдую* углекислоту — «сухой лёд».

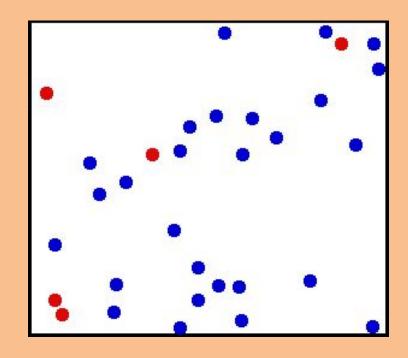
Под влиянием теплоты хлопья сухого льда сразу переходят в газ, минуя жидкое состояние.

ПЛАВЛЕНИЕ

- переход вещества из твердого состояния в жидкое



Чтобы расплавить тело, его нужно нагреть до определенной температуры


Температура, при которой тело плавится называется температурой плавления

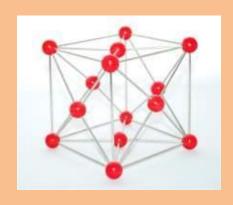
ПРИ ПЛАВЛЕНИИ:

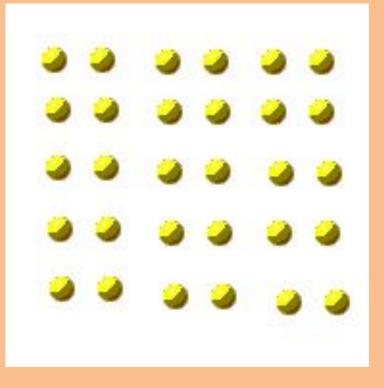
- увеличивается скорость движения молекул;
- разрушается
 упорядоченность
 строения молекул
 (кристаллическая
 структура нарушается);
- силы притяжения между молекулами ослабевают

КРИСТАЛЛИЗАЦИЯ

- переход вещества из жидкого состояния в твердое

Нагретое тело охлаждается до определенной температуры




Температура, при которой вещество кристаллизуется, называется температурой кристаллизации

Температура плавления равна температуре кристаллизации

ПРИ КРИСТАЛЛИЗАЦИИ:

- уменьшается скорость движения молекул;
- идет постепенное образование кристалла;
- увеличиваются силы притяжения между молекулами

СУБЛИМАЦИЯ (ВОЗГОНКА)

Переход вещества из твердого состояния в газообразное, минуя жидкую фазу

ДЕСУБЛИМАЦИЯ

ДОМАШНЕЕ ЗАДАНИЕ

§3,

ответить на вопросы (на слайде), подготовиться к ПР№1 (с. 20-22); Выполнить тестирование «ЯКЛАСС» на тему «Физические тела и вещества» до 15.09

ОТВЕТЬТЕ НА ВОПРОСЫ:

- 1. Почему нельзя нагреть и расплавить свинец в оловянной ложке?
 - 2. Можно ли расплавить цинк в алюминиевой чаше?
 - 3. Расплавится ли цезий в воде при температуре 35⁰C?
 - 4. Одинаковы ли условия кристаллизации стали и железа?