
## Классы неорганических соединений

# *Простые вещества* состоят из атомов одного вида



## ОКСИДЫ -

-это сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления -2.

 $\theta_x 0_y^{-2}$ 

П<u>Несолеобразующие</u> — оксиды, которые не образуют солей, т.к. не реагируют ни с кислотами, ни со щелочами: N<sub>2</sub>O, NO, CO, SiO

П<u>солеобразующие</u> — оксиды, которые образуют соли при взаимодействии с кислотами или основаниями.

- кислотные  $N_2O_5$ ,  $CO_2$ ,  $SiO_2$ ,  $P_2O_5$   $CrO_3$ ,  $Mn_2O_7$
- амфотерные ВеO,  $oldsymbol{ZnO}$ ,  $oldsymbol{Al_2O_3}$ ,  $oldsymbol{Cr_2O_3}$ ,  $oldsymbol{Fe_2O_3}$
- основные  $Na_2O$ , CaO, MgO, CrO,  $MnO \vdash_{C} \bigcirc$
- Существуют <u>двойные (смешанные) оксиды</u> содержащие атомы элемента в различных степенях окисления:
  - $Fe_3O_4$  оксид железа ( II, III )  $Fe^{+2}O\cdot Fe_2^{+3}O_3$

## Кислотные оксиды

- оксиды, которым соответствуют кислоты, большинство из которых могут быть получены при взаимодействии этих оксидов с водой.

$$CO_2 + H_2O \leftrightarrow H_2CO_3$$
  
 $SO_2 + H_2O \leftrightarrow H_2SO_3$   
 $SO_3 + H_2O = H_2SO_4$   
 $N_2O_5 + H_2O = 2HNO_3$   
 $P_2O_5 + 3H_2O = 2H_3PO_4$   
 $CrO_3 + H_2O = H_2CrO_4$   
 $Mn_2O_7 + H_2O = 2HMnO_4$ 

Некоторые оксиды, в которых атомы неметалла находятся в неустойчивой, нехарактерной им промежуточной степени окисления, при взаимодействии с  $H_2O$  в результате реакции диспропорционирования могут образовать одновременно 2 кислоты:

$$2NO_2 + H_2O = HNO_2 + HNO_3$$

## Амфотерные оксиды

- оксиды, которым соответствуют амфотерные основания.

Амфотерность – двойственность.

Амфотерные оксиды в зависимости от условий могут проявлять свойства как кислотных, так и основных оксидов.

$$ZnO$$
  $(Zn(OH)_2 \equiv H_2ZnO_2)$   
 $Cr_2O_3$   $(Cr(OH)_3 \equiv H_3CrO_3 \rightarrow HCrO_2)$   
 $Al_2O_3$   $(Al(OH)_3 \equiv H_3AlO_3 \rightarrow HAlO_2)$ 

#### Основные оксиды

- оксиды, которым соответствуют основания.

$$K_2O (KOH)$$
 FeO  $(Fe(OH)_2)$   
CaO  $(Ca(OH)_2)$  CrO  $(Cr(OH)_2)$   
MgO  $(Mg(OH)_2)$  MnO  $(Mn(OH)_2)$ 

При взаимодействии оксидов щелочных и щелочноземельных металлов (Li, Na, K, Ca, Ba) с водой образуются щелочи – растворимые в воде основания.

$$K_2O + H_2O = 2KOH$$
  
 $CaO + H_2O = Ca(OH)_2$ 

#### <u>Кислоты</u>

- это сложные вещества, состоящие из атомов водорода, которые способны замещаться на атомы металла, и кислотного остатка.

Основность кислоты определяется числом атомов водорода в молекуле кислоты.

Одноосновные: HCI, HBr,  $HNO_3$ 

Двухосновные:  $H_2S$ ,  $H_2SO_4$ 

Трехосновные:  $H_3 PO_4$ 

HF HBr HI

 $H^+CI^-$  - хлороводородная -  $CI^-$  - хлор<u>ид</u>  $H_2^+S^{2-}$  - сероводородная -  $S^{2-}$  - сульф<u>ид</u>  $H_2^+SO_3^{2-}$  - сернистая -  $SO_3^{2-}$  - сульф<u>ит</u>

 $H_{2}^{+}SO_{4}^{2}$ -  $SO_4^2$ - сульфат серная  $H_3^+ PO_4^{3-}$ - ортофосфорная -  $PO_{4}^{3}$ фосфат  $HNO_2$ - азотистая нитрит  $NO_{2}^{-}$  $-NO_{3}^{-}$  $HNO_3$ - азотная - нитрат  $- CO_3^{2-}$ - карбонат  $H_2CO_3$ - угольная  $- SiO_2^{2-}$  $H_2SiO_3$ - кремниевая - силикат  $-MnO_4^ HMnO_{4}$ - марганцовая перманганат  $H_2CrO_4$  $- CrO_4^{2-}$ хромовая - хромат *HClo* - хлорноватистая  $Clo^-$ -гипохлорит  $-ClO_{3}^{-}$ - хлорат  $HClO_3$ - хлорноватая -  $ClO_4^ HClO_{A}$ - хлорная - перхлорат НСООН - формиат - муравьиная - *HCOO*-СН3СООН - уксусная - ацетат  $-CH_3COO^-$ 

#### <u>Основания</u>

это сложные вещества, состоящие из атомов металла и одной или нескольких гидроксогрупп.
 ОН - гидроксогруппа

NaOH - гидроксид натрия  $Fe(OH)_2$  - гидроксид железа (II)  $Mg(OH)_2$  - гидроксид магния  $NH_4OH$  - гидроксид аммония

Кислотность основания определяется числом гидроксогрупп.

## Амфотерные гидроксиды

-это сложные вещества, имеющие свойства как кислот, так и оснований.

Формулы амфотерных гидроксидов можно записывать как в форме оснований, так и в форме кислот.

$$Zn(OH)_2 \equiv H_2ZnO_2$$

 $H_2 ZnO_2$  - цинковая кислота

 $ZnO_2^{2-}$  — цинкат

 $Na_2ZnO_2$  – цинкат натрия

$$Al(OH)_3 \equiv H_3AlO_3^{-H_2O} + HAlO_2$$

*H*<sub>3</sub>*AlO*<sub>3</sub> - ортоалюминиевая кислота

AlO<sub>3</sub><sup>3-</sup> - ортоалюминат

 $Na_3AlO_3$  - ортоалюминат натрия

HAlO<sub>2</sub> - метаалюминиевая кислота

NaAlO<sub>2</sub> - метаалюминат натрия

$$Cr(OH)_3 \equiv H_3CrO_3^{-H_2O} \rightarrow HCrO_2$$

 $H_3CrO_3$  - ортохромистая кислота

**HCrO**<sub>2</sub> - метахромистая кислота

 $NaCrO_2$  - хромит натрия

## Соли

- это сложные вещества, состоящие из атомов металла (ионов аммония) и кислотного остатка.

## Средние соли

- это продукты полного замещения атомов водорода в кислоте на атомы металла или гидроксогрупп основания на кислотные остатки.

```
FeSO_4 - сульфат железа (II)
```

 $Fe_2(SO_4)_3$  - сульфат железа (III)

 $NH_4NO_3$  - нитрат аммония

 $Na_3PO_4$  - фосфат натрия

#### Кислые соли

- это продукты неполного замещения водорода в многоосновной кислоте на атомы металла.

 $NaHCO_3$  - гидрокарбонат натрия  $KH_2PO_4$  - дигидрофосфат калия - гидрофосфат калия

## Основные соли

- это продукты неполного замещения гидроксогрупп в многокислотном основании на кислотный остаток.
  - $(CuOH)_2CO_3$  карбонат гидроксомеди (II) (гидроксокарбонат меди (II))

## Спасибо за вниманиие.