

НЕПРЕРЫВНЫЕ ФУНКЦИИ

Пусть функция y=f(x) определена в некоторой окрестности точки x_0 , для всех $x\neq x_0$. Тогда функция называется *непрерывной в точке* x_0 , если выполняются следующие условия:

- a) существует $f(x_0)$;
- б) существуют и конечны односторонние пределы $\lim_{x o x_0 = 0} f(x) = A^-$ и $\lim_{x o x_0 + 0} f(x) = A^+$;
- B) $A^- = A^+ = f(x_0)$.

Эти три условия можно объединить в одно высказывание: функция непрерывны в точке, если

$$\lim_{x o x_0}f(x)=f(x_0),$$

т.е. предел функции в точке существует и равен значению функции в этой точке.

КЛАССИФИКАЦИЯ ТОЧЕК РАЗРЫВА

Если хотя бы одно из условий a) - в) не выполняется, то в точке x_0 функция y=f(x) не является непрерывной, и точка x_0 называется *точкой разрыва* функции f(x).

Точки разрыва делятся на два типа: I и II рода.

Если
$$\lim_{x o x_0-0}f(x)=A^-$$
 и $\lim_{x o x_0+0}f(x)=A^+$ конечны, то x_0 – точка разрыва I рода.

- ullet если $A^-
 eq A^+$, то в точке x_0 неустранимый разрыв I рода ("скачок");
- ullet если $A^-=A^+
 eq f(x_0)$, или $A^-=A^+$, а $f(x_0)$ не существует, то в точке x_0 *устранимый* разрыв I рода.

Если хотя бы одно из A^- или A^+ равно ∞ или не существует, то x_0 – точка разрыва ІІ рода.

Элементарные функции непрерывны во всех точках своей области определения.

АЛГОРИТМ ИССЛЕДОВАНИЯ ФУНКЦИИ НА НЕПРЕРЫВНОСТЬ

Исследование функции на непрерывность проводится по следующей схеме:

1. Выделить точки возможного разрыва функции. Для элементарной функции это точки, в которых функция не определена. Для составной функции, например:

$$f(x)=egin{cases} f_1\left(x
ight), & -\infty < x \leq a \ f_2\left(x
ight), & a < x < +\infty \end{cases}$$
, где $f_1(x)$ и $f_2(x)$ - элементарные функции, определенные на $(-\infty,a]$ и $(a,+\infty)$, соответственно;

это точки, в которых происходит смена аналитических выражений, с помощью которых задана неэлементарная функция (в приведенном примере это точка x=a).

- 2. Найти односторонние пределы функции в каждой из выделенных точек $\lim_{x \to x_0 = 0} f(x)$ и $\lim_{x \to x_0 + 0} f(x)$ и значения функции, если это возможно.
- 3. Сравнить значения односторонних пределов и значения функции в точках возможного разрыва и сделать вывод.
- 4. Начертить эскиз графика функции. Для уточнения графика функции можно найти $\lim_{x o \pm \infty} f(x)$.

Пример 1. Исследуем на непрерывность функцию $y = \frac{\sin x}{x}$.

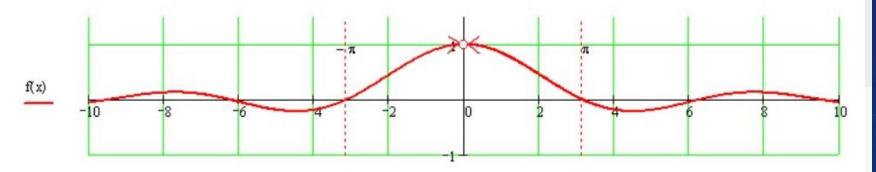
Р е ш е н и е. Данная элементарная функция определена и непрерывна при всех $x \neq 0$.

Так как $\lim_{x\to +0} \frac{\sin x}{x} = \lim_{x\to -0} \frac{\sin x}{x} = 1$ (первый замечательный предел), то x=0 является точкой разрыва I рода, устранимого.

График рассматриваемой функции пересекает ось Ox в точках, в которых $\sin x = 0$, т.е. при $x = \pi n$.

Предел на бесконечности: $\lim_{x \to \infty} \frac{\sin x}{x} = 0.$

График функции.



Пример 2. Исследуем на непрерывность функцию $y=\mathrm{arctg} \frac{1}{x}$.

 P е ш е н и е. Данная функция является элементарной, определенной при всех $x \neq 0$, следовательно, при таких значениях x она является непрерывной.

Найдем односторонние пределы функции в точке x=0:

$$\lim_{x\to -0} \operatorname{arctg} \tfrac{1}{x} = \left[\operatorname{arctg} \tfrac{1}{-0}\right] = \left[\operatorname{arctg} (-\infty)\right] = -\tfrac{\pi}{2} \ \mathsf{ii} \ \lim_{x\to +0} \operatorname{arctg} \tfrac{1}{x} = \left[\operatorname{arctg} \tfrac{1}{+0}\right] = \left[\operatorname{arctg} (+\infty)\right] = \tfrac{\pi}{2}.$$

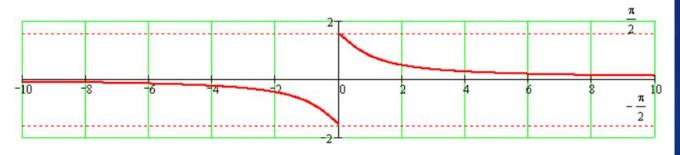
Односторонние пределы конечны и не равны, следовательно, x=0 – точка разрыва I рода, неустранимого.

Пределы на бесконечности:

$$\lim_{x \to \infty} \arctan \frac{1}{x} = \left[\arctan \frac{1}{\infty}\right] = \arctan(0) = 0.$$

График функции:

f(x)



Пример 3. Исследуем на непрерывность функцию $y=2^{\frac{1}{x-1}}$.

P е ш е н и е. Данная функция является элементарной, определенной при всех $x \neq 1$, следовательно, она является непрерывной при $x \neq 1$.

Найдем односторонние пределы функции в точке x=1:

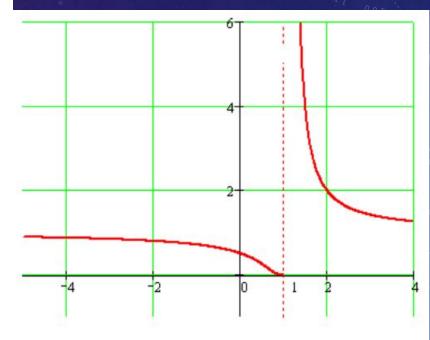
$$\lim_{x \to 1-0} 2^{\frac{1}{x-1}} = \left[2^{\frac{1}{1-0-1}} = 2^{\frac{1}{-0}} = 2^{-\infty} \right] = 0$$

$$\lim_{x \to 1+0} 2^{\frac{1}{x-1}} = \left[2^{\frac{1}{1+0-1}} = 2^{\frac{1}{+0}} = 2^{+\infty} \right] = +\infty.$$

Так как предел справа равен $+\infty$, то x=1 – точка разрыва II рода.

Для уточнения графика найдем пределы на бесконечности:

$$\lim_{x \to \infty} 2^{\frac{1}{x-1}} = \left[2^{\frac{1}{\infty - 1}} = 2^{\frac{1}{\infty}} \right] = 2^0 = 1.$$



Пример 4. Исследовать на непрерывность функцию

$$y = \left\{ egin{array}{ll} x+2, & x<-1, \ x^2, & -1 \leq x < 1, \ 2, & x \geq 1. \end{array}
ight.$$

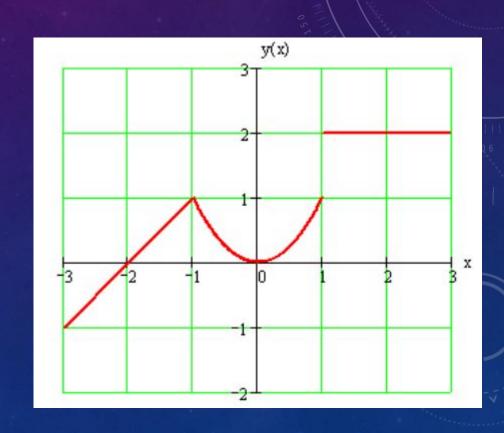
Р е ш е н и е. Данная функция не является элементарной, но в интервалах $(-\infty,-1)$, $(-1,1),(1,+\infty)$ она задана одним аналитическим выражением, определена в каждом из этих интервалов, следовательно, непрерывна. Разрыв у данной функции может быть в точках x=-1 и x=1. Найдем односторонние пределы и значение функции в каждой из этих точек.

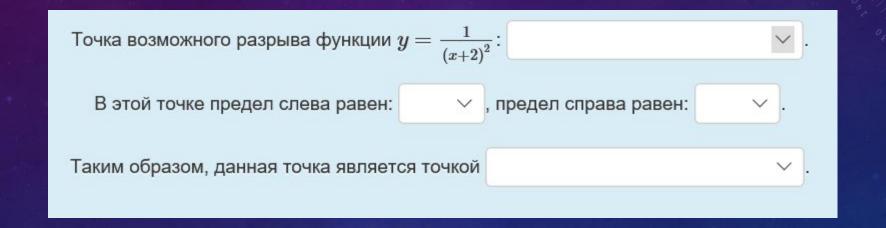
$$\lim_{x \to -1-0} y = \lim_{x \to -1-0} (x+2) = 1, \lim_{x \to -1+0} y = \lim_{x \to -1+0} x^2 = 1,$$
 $y(-1) = x^2 \big|_{x=-1} = 1.$

Односторонние пределы функции в точке x=-1 равны между собой и равны значению функции в этой точке, следовательно, x=-1 является точкой непрерывности функции.

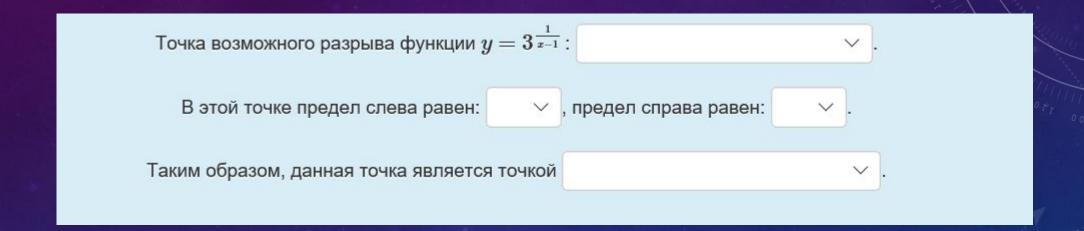
$$\lim_{x \to 1-0} y = \lim_{x \to 1-0} x^2 = 1$$
, $\lim_{x \to 1+0} y = \lim_{x \to 1+0} 2 = 2$, $y(1) = 2$.

Односторонние пределы функции в точке x=1 конечны и не равны между собой, следовательно, x=1 – точка разрыва первого рода, неустранимого.

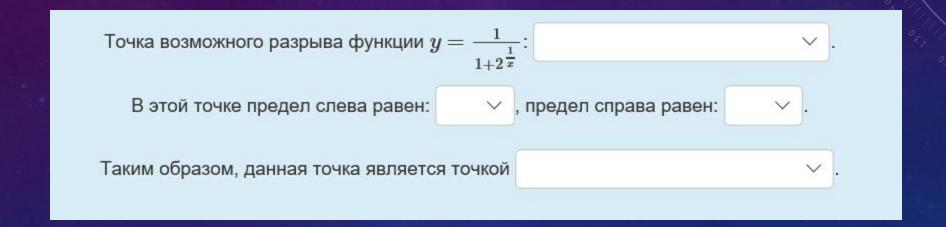




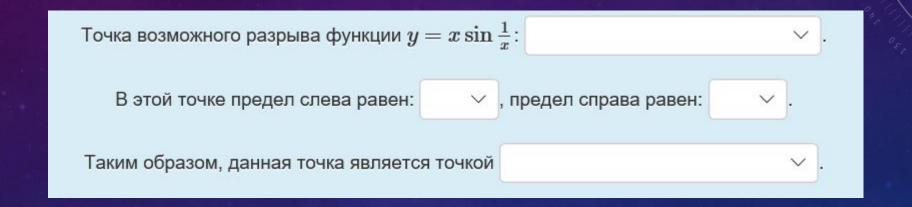
Ответы: x = - 2; + ∞; + ∞; точка разрыва второго рода



Ответы: x = 1; 0; +∞; точка разрыва второго рода



• Ответы: x = 0; 1; 0; точка разрыва первого рода, неустранимая



• Ответы: x = 0; 0; 0; точка разрыва первого рода, устранимая

Исследуйте на непрерывность функцию

$$y=\left\{egin{array}{ll} 0, & x<-\pi, \ \sin x, & -\pi\leq x<0, \ x+1, & x\geq 0. \end{array}
ight.$$

в точках $x=-\pi$ и x=0.

Таким образом, данная точка является точкой

Ответы: 0; 0; 0; точка непрерывности;

0; 1; 1; точка разрыва первого рода, неустранимого.