ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Лекция 4

Операции над событиями

Пусть дано вероятностное пространство

 $\langle \mathbf{S}^2, \mathbf{S}^2, \mathbf{p} \rangle$

СУММА СОБЫТИЙ

Суммой А+В двух событий А и В называют событие, состоящее в появлении события А, или события В, или обоих этих событий.

Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий.

Например, событие **A** + **B** + **C** состоит в появлении <u>одного из</u> событий: **A**, **B**, **C**, **A** и **B**, **A** и **C**, **B** и **C**, **A** и **B** и **C**.

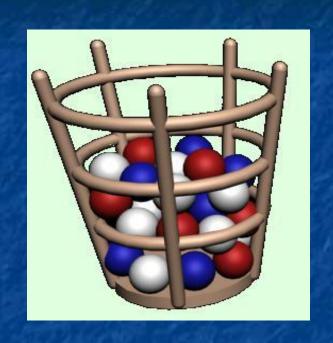
Теорема сложения

Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: P(A+B) = P(A) + P(B).

Следствие. Вероятность суммы нескольких попарно несовместных событий равна сумме вероятностей этих событий:

$$P(A_1 + A_2... + A_n) = P(A_1) + P(A_2)... + P(A_n)$$

Пример



В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления

Решение. Появление Появление либо красного либо синего шара.

Вероятность появления красного шара (событие A)

$$P(A) = \frac{10}{30} = \frac{1}{3}$$

Вероятность появления (событие В)

$$P(B) = \frac{5}{30} = \frac{1}{6}$$

События А и В несовместны.

Искомая вероятность:

$$P(A+B) = P(A) + P(B) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$$

Полная группа событий

Теорема.

Сумма вероятностей событий

 A_1 , A_2 , образующих полную группу несовместных событий, равна единице:

$$P(A_1) + P(A_2) + ... + P(A_n) = 1$$

Пример

Консультационный пункт института получает пакеты с контрольными работами из городов *А, В* и *С*. Вероятность получения пакета из города *А* равна *0,7*, из города В — **0,2**.

Найти вероятность того, что очередной пакет будет получен из города **С**.

Решение

События «пакет получен из города A», «пакет получен из города B», «пакет получен из города С» образуют полную группу, поэтому: 0.7 + 0.2 + p = 1.Отсюда искомая вероятность

$$p = 1 - 0.9 = 0.1.$$

Следствие. Сумма вероятностей противоположных событий равна единице:

$$P(A) + P(\overline{A}) = 1.$$

Следовательно,

$$P(\overline{A}) = 1 - P(A)$$

Пример. В ящике имеется **n** деталей, из которых m стандартных. Найти вероятность того, что среди **k** наудачу извлеченных деталей есть хотя бы одна стандартная.

Решение. События «среди извлечённых деталей есть хотя бы одна стандартная» и «среди извлечённых деталей нет ни одной стандартной» - противоположные.

Обозначим исходное событие A P(A) = 1 - P(A),

$$P(\overline{A}) = \frac{C_{n-m}^k}{C_n^k}$$

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{C_{n-m}^{\kappa}}{C_n^{\kappa}}.$$

Обозначения

$$P(A) = p \Rightarrow P(\overline{A}) = q$$
$$p + q = 1$$

Вероятность появления хотя бы одного события в п испытаниях

Пусть в n независимых испытаниях события $A_1, A_2, ..., A_n$, появляются с вероятностями

$$p_1, p_2, ..., p_n$$

Теорема.

Вероятность появления хотя бы одного из событий $A_1, A_2, ..., A_n$, независимых в совокупности равна

$$P(A) = 1 - q_1 q_2 ... q_n$$

Пример

Два стрелка стреляют по мишени. Вероятность попадания у первого стрелка p1=0,6; у второго стрелка p2=0,7. Какова вероятность, что хотя бы один из стрелков попал в цель?

Решение

 Зная вероятности попадания стрелков p1=0,6 и p2=0,7, найдем вероятности промаха для каждого стрелка

$$\overline{p}_1 = 1 - p_1 = 1 - 0, 6 = 0, 4$$
 $\overline{p}_2 = 1 - p_2 = 1 - 0, 7 = 0, 3$

 Тогда вероятность, что хотя бы один из стрелков попадет

$$P(A) = 1 - \overline{p}_1 \cdot \overline{p}_2 = 1 - 0, 4 \cdot 0, 3 = 0,88$$

Произведение событий

Произведением (совмещением) двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий.

Пример

Два стрелка стреляют по мишени. Вероятность попадания у первого стрелка p1=0,6; у второго стрелка p2=0,7. Какова вероятность, что оба стрелка попадут в мишень?

Решение

 Так как вероятность совместного попадания стрелков цель равна произведению вероятностей попадания каждого из стрелков, имеем

$$P(A)=p1 \cdot p2=0,6 \cdot 0,7=0,42$$

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий.

Пример

Четыре монеты подбрасывают одновременно. Найти вероятность, что 4 раза выпадет герб.

Решение

- Вероятность выпадения герба на одной монете p=1/2 (так как благоприятный исход m=1; общее число исходов n=2)
- Поскольку герб должен выпасть 4 раза, получаем

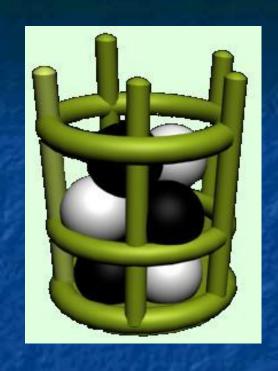
$$P(A)=1/2\cdot1/2\cdot1/2\cdot1/2=1/16$$

Условная вероятность

Условной вероятностью

$$P_{\!\scriptscriptstyle A} \left(B
ight)$$
или $P \left(B \, / \, A
ight)$

называют вероятность события *В*, вычисленную в предположении, что событие *А* уже наступило.



Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно.

Найти вероятность появления белого шара при втором испытании (событие **В**), если при первом испытании был извлечен черный шар (событие **A**).

Решение. После первого испытания в урне осталось пять шаров, из них три белых. Искомая условная вероятность:

$$P_A(B) = \frac{3}{5}$$

Условная вероятность

$$P_A(B) = \frac{P(AB)}{P(A)}$$

$$(P(A) > 0)$$

Теорема умножения вероятностей

$$P(AB) = P(A) \cdot P_A(B).$$

Замечание

$$P(BA) = P(B) \cdot P_B(A),$$

$$P(AB) = P(B) \cdot P_B(A).$$

$$P(A) \cdot P_A(B) = P(B) \cdot P_B(A).$$

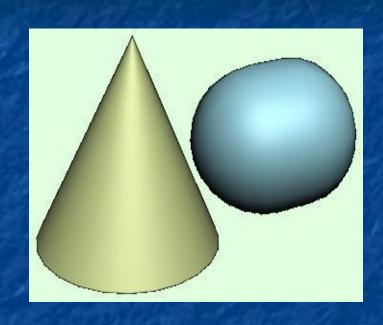
Следствие

$$P(A_1 A_2 A_3 ... A_n) =$$

$$= P(A_1)P_{A_1}(A_2)P_{A_1A_2}(A_3)...P_{A_1A_2...A_{n-1}}(A_n)$$

$$P(ABC) = P(A)P_A(B)P_{AB}(C)$$

Пример



У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй.

Найти вероятность того, что первый из взятых валиков — конусный, а второй — эллиптический.

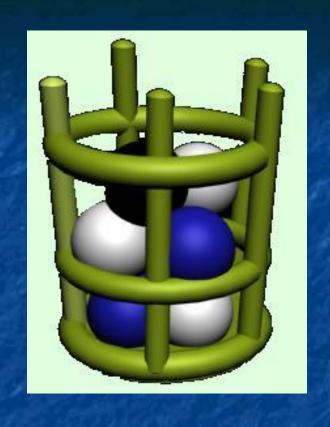
гешение. Первый валик- конусный (событие **A**), второй валик- эллиптический (событие **B**).

$$P(A) = \frac{3}{10}, \qquad P_A(B) = \frac{7}{9}$$

$$P(AB) = P(A)P_A(B) = \frac{3}{10} \cdot \frac{7}{9} = \frac{7}{30}$$

$$P(B) = \frac{7}{10}, P_B(A) = \frac{3}{9},$$

$$P(AB) = P(B)P_B(A) = \frac{7}{30}.$$



Пример. В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно.

Найти вероятность того, что при первом испытании появится белый шар (событие **A**), при втором — черный (**B**) и при третьем — синий (**C**).

Решение

$$P(A) = \frac{5}{12}, \qquad P_A(B) = \frac{4}{11}, \qquad P_{AB}(C) = \frac{3}{10},$$

$$P(ABC) = P(A)P_A(B)P_{AB}(C) = \frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} = \frac{1}{22}.$$

Независимые события. Теорема умножения для независимых событий

Событие **В** называют независимым от события **A**, если

$$P_A(B) = P(B)$$

$$P(AB) = P(A)P_A(B) =$$

$$P(A)P(B) = P(B)P_B(A) \Longrightarrow$$

$$P_B(A) = P(A).$$

Если событие **В не зависит** от события **А**, событие **А не зависит** от события **В**.

Для независимых событий теорема умножения

$$P(AB) = P(A)P(B)$$

Пример Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием (событие **A**) равна **0,8**, а вторым (событие **B**) – **0,7**.

Решение. События **A** и **B** независимые, поэтому:

$$P(AB) = P(A)P(B) = 0.7 \cdot 0.8 = 0.56.$$

Замечание. Если события A и B независимы, то независимы также события $A \ u \ \overline{B}, \ \overline{A} \ B, \ \overline{B}.$

$$P(A\overline{B}) = P(A)(1 - P(B)),$$

$$P(A\overline{B}) = P(A)P(\overline{B}).$$

Несколько событий называют попарно независимыми, если каждые два из них независимые.

Несколько событий называются независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных.

Если несколько событий независимы попарно, то отсюда ещё не следует их независимость в совокупности.

Следствие из Теоремы Умножения.

Вероятность совместного появления нескольких событий, независимых в совокупности, равна:

$$P(A_1A_2...A_n) = P(A_1)P(A_2)...P(A_n).$$

Найти вероятность совместного появления герба при одном бросании двух монет.

Решение. Вероятность появления герба первой монеты (событие A)

$$P(A) = \frac{1}{2}.$$

Вероятность появления герба второй монеты (событие В)

$$P(B) = \frac{1}{2}.$$

$$P(AB) = P(A)P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором – 7 и в третьем – 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся

стандартными.

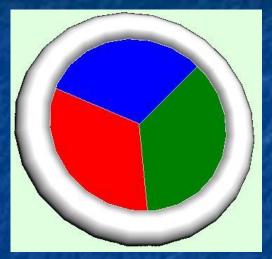
Решение. Из первого ящика вынута стандартная деталь (событие A), из второго - B), из третьего — C.

$$P(A) = \frac{8}{10} = 0.8.$$
 $P(B) = \frac{7}{10} = 0.7.$

$$P(C) = \frac{9}{10} = 0.9.$$

События А,В,С независимые, поэтому

$$P(ABC) = P(A)P(B)P(C) = 0.8 \cdot 0.7 \cdot 0.9 = 0.504.$$



Вероятности попадания в цель при стрельбе из трех орудий таковы:

$$p_1 = 0.8; p_2 = 0.7; p_3 = 0.9.$$

Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Рассматриваемые события:

- A_1 ={попадание первого орудия},
- A_2 ={попадание второго орудия},
- A_3 ={попадание третьего орудия}

Вероятности событий, противоположных событиям A_1 , A_2 A_3 (т.е. вероятности промахов), соответственно равны:

$$q_1 = 1 - p_1 = 1 - 0.8 = 0.2;$$

 $q_2 = 1 - p_2 = 1 - 0.7 = 0.3;$
 $q_3 = 1 - 0.9 = 0.1$

$$P(A) = 1 - q_1 q_2 q_3 = 1 - 0.2 \cdot 0.3 \cdot 0.1 = 0.994$$

Вероятность того, что при одном выстреле стрелок попадает в цель, равна *0,4*. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее *0,9* он попал в цель хотя бы один раз?

Решение

Приняв во внимание, что, по условию,

$$P(A) \ge 0.9, p = 0.4$$

(следовательно, q = 1 - 0.4 = 0.6)

получим $1 - 0.6^n \ge 0.9$;

 $0,6^n \le 0,1$

 $n \lg 0.6 \le \lg 0.1$

Учитывая Ig0.6 < 0, имеем

$$n \ge \frac{\lg 0,1}{\lg 0,6} = \frac{-1}{\overline{1,7782}} = \frac{-1}{-0,2218} = 4,5.$$

$$n \ge 5$$

Вероятность того, что событие появится хотя бы один раз в трёх независимых в совокупности испытаниях, равна *0,* 936. Найти вероятность появления события в одном испытании.

Решение. Применим формулу

$$P(A) = 1 - q^n.$$

P(A) = 0,936; n = 3.
$$0,936 = 1 - q^3$$
,
 $q^3 = 1 - 0,936 = 0,064$.

$$q = \sqrt[3]{0,064} = 0,4.$$

p = 1 - q = 1 - 0,4 = 0,6.

Брошены монета и игральная кость. Найти вероятность совмещения событий: появится герб и появится 6 очков.

Решение

 Вероятность появление герба при броске монеты равна p1=1/2.

Вероятность появления 6 очков при броске игральной кости равна р2=1/6 (всего граней 6, благоприятный исход 1).

 Вероятность совместного появления этих двух событий равна произведению их вероятностей, то есть

$$P(A)=p1\cdot p2=1/2\cdot 1/6=1/12$$

Вероятность того, что стрелок при одном выстреле попадет в мишень равна p=0,9. Стрелок сделал три выстрела. Найти вероятность, что все три выстрела дали попадание.

Решение

• Обозначим события

А={первый выстрел попал}

В={второй выстрел попал}

С={третий выстрел попал}

• События А,В,С независимые.

 Вероятность, что все три выстрела дали попадание Р(АВС) можно найти по формуле умножения для независимых событий

$$P(ABC)=P(A)\cdot P(B)\cdot P(C)=0,9\cdot 0,9\cdot 0,9=0,729$$

Вероятность поражения цели первым стрелком p1=0,7, вторым p2=0,6. Найти вероятность, что цель будет поражена только одним стрелком.

Решение

- Поражение цели только одним стрелком означает, что первый попал и второй не попал или первый не попал и второй попал.
- Переведем эту фразу на язык вероятностей:

$$p_1 = 0,7 \Rightarrow p_1 = 0,3$$

 $p_2 = 0,6 \Rightarrow p_2 = 0,4$

$$P(A) = p_1 p_2 + p_1 p_2$$

Подставив значения, имеем

$$P(A)=0,3.0,6+0,7.0,4=0,44$$

Среди 100 лотерейных билетов 5 выигрышных. Найдите вероятность того, что 2 наудачу купленных билета будут выигрышными.

Решение

- Обозначим события
 A={первый билет выигрышный}
 B={второй билет выигрышный}
- Вероятность события Р(А)=5/100
- Вероятность события В, при условии, что первый купленный билет выигрышный равна 4/99

$$P(AB) = P(A)P_A(B)$$

Подставим найденные значения в формулу

Вопросы к лекции 4

- Теорема сложения вероятностей
- Вероятность появления хотя бы одного события в п испытаниях
- Вероятность совместного появления независимых событий
- Условная вероятность
- Теорема умножения вероятностей

