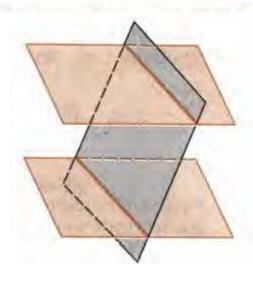

Параллельность плоскостей.

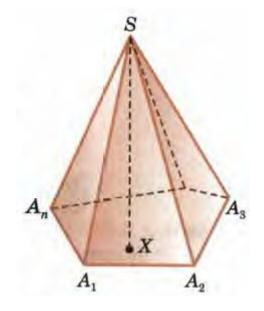
Признак параллельности плоскостей

Теорема


2.4

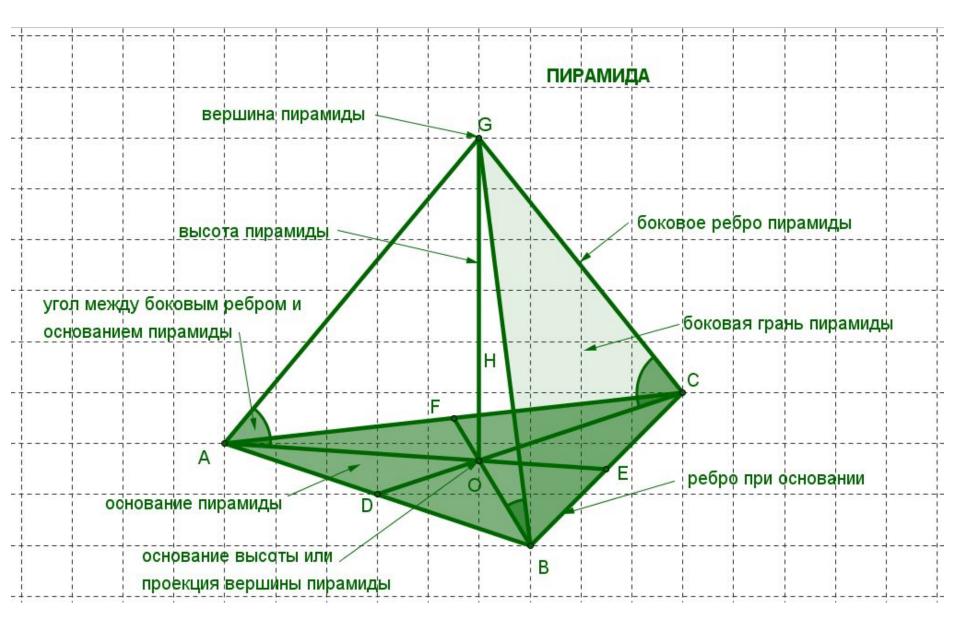
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

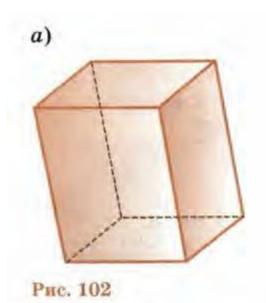

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны (рис. 23).

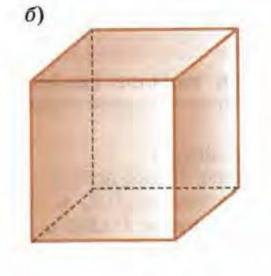
Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

Тэтраэдр


Пирамидой называется многогранник, который состоит из плоского многоугольника — основания пирамиды, точки, не лежащей в плоскости основания, — вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 108).

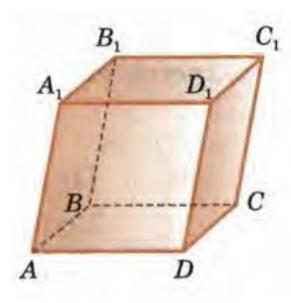
Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами.


Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань — треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной — сторона основания пирамиды.

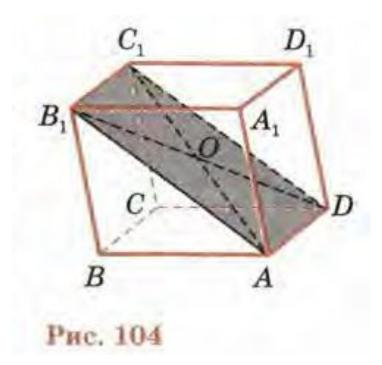

Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Параллелепипед

Если основание призмы есть параллелограмм, то она называется параллеленипедом. У параллеленипеда все грани — параллелограммы.

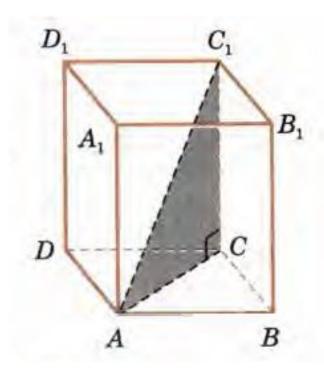


Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.


Теорема

5.2

У параллелепипеда противолежащие грани параллельны и равны.


Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Доказательство.

Рассмотрим прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$ (рис. 105). Из прямоугольного треугольника AC_1C по теореме Пифагора получаем

$$AC_1^2 = AC^2 + CC_1^2.$$

Из прямоугольного треугольника АСВ по теореме Пифагора получаем

$$AC^2 = AB^2 + BC^2.$$

Отсюда

$$AC_1^2 = CC_1^2 + AB^2 + BC^2.$$

Ребра AB, BC и CC_1 не параллельны, а следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана.

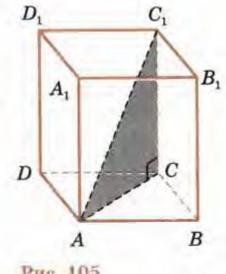


Рис. 105