Computation of Large-Scale Genomic Evaluations

Paul VanRaden

Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD

Paul.vanraden@ars.usda.gov

Paul

VanRaden

University of Maryland Animal Science seminar (1)

Early genomic theory

- Nejati-Javaremi et al (1997) tested use of genomic relationship matrix in BLUP
- Meuwissen et al (2001) tested linear and nonlinear estimation of haplotype effects
- Both studies assumed that few (<1,000) markers could explain all genetic variance (no polygenic effects in model)

Polygenic variance was only 5% with 50,000
 SNP (VanRaden, 2008), but 50% with 1,000

Paul

VanRaden

University of Maryland Animal Science seminar (2)

Multi-step genomic evaluations

- Traditional evaluations computed first and used as input data to genomic equations
- Allele effects estimated for 45,187 markers by multiple regression, assuming equal prior variance
- Polygenic effect estimated for genetic variation not captured by markers, assuming pedigree covariance
- Selection index step combines genomic info with traditional info from non-genotyped parents
- Applied to 30 yield, fitness, calving and type traits

Раш

VanRaden

University of Maryland Animal Science seminar (3)

Single-step genomic evaluation

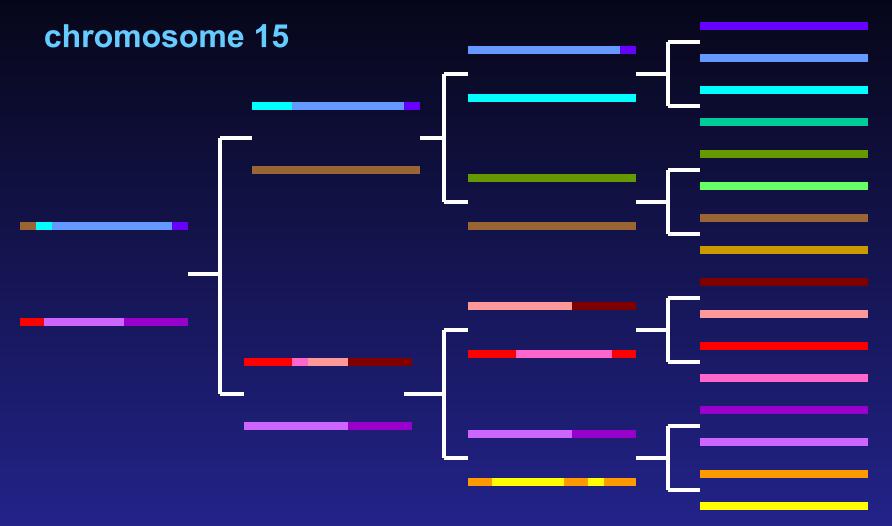
- Benefits of 1-step genomic evaluation
 - Account for genomic pre-selection
 - Expected Mendelian Sampling ≠ 0
 - Improve accuracy and reduce bias
 - Include many genotyped animals
- Redesign animal model software used since 1989

Ран

VanRaden

University of Maryland Animal Science seminar (4)

Pedigree: Parents, Grandparents, etc.



University of Maryland Animal Science seminar (5)

Paul VanRaden

O-Style Haplotypes

University of Maryland Animal Science seminar (6)

Paul VanRaden

Expected Relationship Matrix¹

1HO9167 O-Style

	PGS	PGD	MGS	MGD	Sire	Dam	Bull
Manfred	1.0	.0	.0	.0	.5	.0	.25
Jezebel	.0	1.0	.0	.0	.5	.0	.25
Teamster	.0	.0	1.0	. 0	.0	.5	.25
Dima	.0	.0	.0	1.0	.0	.5	.25
O-Man	.5	.5	.0	.0	1.0	.0	.5
Deva	.0	.0	.5	.5	.0	1.0	.5
O-Style	.25	.25	.25	.25	.5	.5	1.0

¹Calculated assuming that all grandparents are unrelated

University of Maryland Animal Science seminar (7)

Pedigree Relationship Matrix

1HO9167 O-Style

	PGS	PGD	MGS	MGD	Sire	Dam	Bull
Manfred	1.053	.090	.090	.105	.571	.098	.334
Jezebel	.090	1.037	.051	.099	.563	.075	.319
Teamster	.090	.051	1.035	.120	.071	.578	.324
Dima	.105	.099	.120	1.042	.102	.581	.342
O-Man	.571	.563	.071	.102	1.045	.086	.566
Deva	.098	.075	.578	.581	.086	1.060	.573
O-Style	.334	.319	.324	.342	.566	.573	1.043

Paul

VanRaden

University of Maryland Animal Science seminar (8)

Genomic Relationship Matrix

1HO9167 O-Style

	PGS	PGD	MGS	MGD	Sire	Dam	Bull
Manfred	1.201	.058	.050	.093	.609	.054	.344
Jezebel	.058	1.131	.008	.135	.618	.079	.357
Teamster	.050	.008	1.110	.100	.014	.613	.292
Dima	.093	.135	.100	1.139	.131	.610	.401
O-Man	.609	.618	.014	.131	1.166	.080	.626
Deva	.054	.079	.613	.610	.080	1.148	.613
O-Style	.344	.357	.292	.401	.626	.613	1.157

Paul

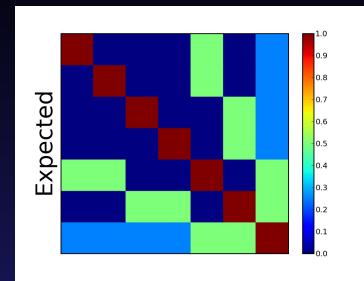
VanRaden

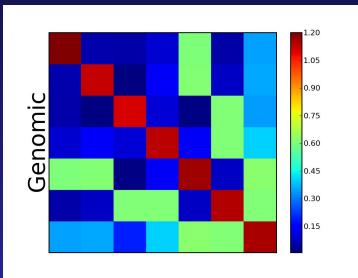
University of Maryland Animal Science seminar (9)

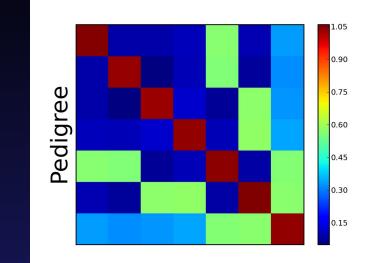
Difference (Genomic – Pedigree)

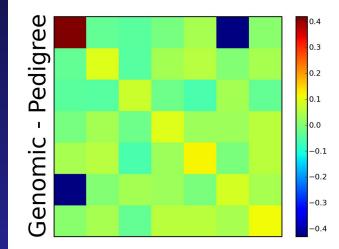
1HO9167 O-Style

	PGS	PGD	MGS	MGD	Sire	Dam	Bull
Manfred	.149	032	040	012	.038	043	.010
Jezebel	032	.095	043	.036	.055	.004	.038
Teamster	040	043	.075	021	057	.035	032
Dima	012	.036	021	.097	.029	.029	.059
O-Man	.038	.055	057	.029	.121	006	.060
Deva	043	.004	.035	.029	006	.087	.040
O-Style	.010	.038	032	.059	.060	.040	.114




Paul


VanRaden


University of Maryland Animal Science seminar (10)

Pseudocolor Plots — O-Style

University of Maryland Animal Science seminar (11)

Paul VanRaden

1 – Step Equations

Aguilar et al., 2010

Model: y = X b + W u + e + other random effects not shown

 $\begin{bmatrix} X' R^{-1} X & X' R^{-1} W \\ W' R^{-1} X & W' R^{-1} W + H^{-1} k \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} X' R^{-1} y \\ W' R^{-1} y \end{bmatrix}$ $H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}$

Size of G and A₂₂ >300,000 and doubling each year Size of A is 60 million animals

University of Maryland Animal Science seminar (12)

Paul

Modified 1-Step Equations

Legarra and Ducrocq, 2011

To avoid inverses, add equations for γ , ϕ Use math opposite of absorbing effects

 $\begin{bmatrix} X'R^{-1}X & X'R^{-1}W & 0 & 0 \\ W'R^{-1}X & W'R^{-1}W+A^{-1}k & Q & Q \\ 0 & Q' & -G/k & 0 \\ 0 & Q' & 0 & A_{22}/k \end{bmatrix} \begin{bmatrix} b \\ u \\ \gamma \\ \phi \end{bmatrix} = \begin{bmatrix} X'R^{-1} & y \\ W'R^{-1} & y \\ 0 \\ 0 \end{bmatrix}$ Iterate for γ using $G = Z Z' / [2 \Sigma p(1-p)]$ Iterate for ϕ using A_{22} multiply (Colleau) $Q' = [0 \ I]$ (I for genotyped animals)

Paul

Genomic Algorithms Tested

- 1-step genomic model
 - Add extra equations for γ and φ (Legarra and Ducrocq)
 - Converged ok for JE, bad for HO
 - Extended to MT using block diagonal
 - Invert 3x3 A⁻¹u, Gγ, -A₂₂φ blocks? NO
 - PCG iteration (hard to debug) Maybe

Paul

Genomic Algorithms (continued)

- Multi-step insertion of GEBV
 - $[W'R^{-1}W + A^{-1}k] u = W'R^{-1}y$ (without G)
 - Previous studies added genomic information to W'R⁻¹W and W'R⁻¹y
 - Instead: insert GEBV into u, iterate
- 1-step genomic model using DYD
 - Solve SNP equations from DYD & YD

May converge faster, but approximate

VanRaden

University of Maryland Animal Science seminar (15)

Data for 1-Step Test

- National U.S. Jersey data
 - 4.4 million lactation phenotypes
 - 4.1 million animals in pedigree
 - Multi-trait milk, fat, protein yields
 - 5,364 male, 11,488 female genotypes
- Deregressed MACE evaluations for 7,072 bulls with foreign daughters (foreign dams not yet included)

Paul

Jersey Results

New = 1-step GPTA milk, Old = multi-step GPTA milk

Statistic Corr(New, Old) Corr(New, Old) $Corr(DYD_g, DYD)$ **Corr(New, Old) SD old PTA milk SD new PTA milk Old milk trend** New milk trend

Animals

All bulls	0.994
Genotyped bulls	0.992
Genotyped bulls	0.999
Young genomic	0.966
Young genomic	540
Young genomic	552
1995-2005 cows	1644
1995-2005 cows	1430

1-Step vs Multi-Step: Results

Data cutoff in August 2008

	-	Squared
Evaluation	Regression	Correlation
Parent Average	.73	.436
Multi-Step GPTA	.75	.520
1-Step GPTA	.85	.520
Expected	.93	

Multi-step regressions also improved by modified selection index weights

Paul

VanRaden

University of Maryland Animal Science seminar (18)

Computation Required

- CPU time for 3 trait ST model
 - JE took 11 sec / round including G
 - HO took 1.6 min / round including G
 - JE needed ~1000 rounds (3 hours)
 - HO needed >5000 rounds (>5 days)
- Memory required for HO
 - 30 Gigabytes (256 available)

Paul

VanRaden

University of Maryland Animal Science seminar (19)

Remaining Issues

- Difficult to match G and A across breeds
- Nonlinear model (Bayes A) possible with SNP effect algorithm
- Interbull validation not designed for genomic models
- MACE results may become biased

Ран

VanRaden

University of Maryland Animal Science seminar (20)

Steps to prepare genotypes

- Nominate animal for genotyping
- Collect blood, hair, semen, nasal swab, or ear punch
 - Blood may not be suitable for twins
- Extract DNA at laboratory
- Prepare DNA and apply to BeadChip
- Do amplification and hybridization, 3-day process
- Read red/green intensities from chip and call genotypes from clusters

Раш

Ancestor Validation and Discovery

- Ancestor discovery can accurately confirm, correct, or discover parents and more distant ancestors for most dairy animals because most sires are genotyped.
- Animal checked against all candidates
- SNP test and haplotype test both used

 Parents and MGS are suggested to breed associations and breeders since December 2011 to improve pedigrees.

Ancestor Discovery Results by Breed

	SNP Test	SNP Test Haploty	
Breed	% Confirmed [*]	% Confirmed	% Confirmed
Holstein	95 (98) [†]		
Jersey	91 (92)	95	95
Brown Swiss	94 (95)	97	85

*Confirmation = top MGS candidate matched true pedigree MGS. *50K genotyped animals only.

Paul

VanRaden

University of Maryland Animal Science seminar (23)

Data (Yield and Health)

- One step model includes:
 - 72 million lactation phenotypes
 - 50 million animals in pedigree
 - 29 million permanent environment
 - 7 million herd mgmt groups
 - 11 million herd by sire interactions
 - 7 traits: Milk, Fat, Protein, SCS, longevity, fertility
 - Genotypes not yet included

Раш

New Features Added

- Model options now include:
 - Multi-trait models
 - Multiple class and regress variables
 - Suppress some factors / each trait
 - Random regressions
 - Foreign data
 - Parallel processing
 - Genomic information

Renumber factors in same program

Paul

Computation Required: Evaluation

CPU for all-breed model (7 traits)

 ST: 4 min / round with 7 processors and ~1000 rounds (2.8 days)

- MT: 15 min / round and ~1000 rounds
- ~200 rounds for updates using priors
- Little extra cost to include foreign
- Memory required

ST or MT: 32 Gbytes (256 available)

Paul

Computation Required: Imputation

- Impute 636,967 markers for 103,070 animals
 - Required 10 hours with 6 processors (findhap)
 - Required 50 Gbytes memory
 - Program Fimpute from U. Guelph slightly better
- Impute 1 million markers on 1 chromosome (sequences) for 1,000 animals
 - Required 15 minutes with 6 processors
 - Required 4 Gbytes memory

University of Maryland Animal Science seminar (27)

Paul

Methods to Trace Inheritance

- Few markers
 - Pedigree needed
 - Prob (paternal or maternal alleles inherited) computed within families
- Many markers
 - Can find matching DNA segments without pedigree

Prob (haplotypes are identical) mostly near 0 or 1 if segments contain many markers

Ран

VanRaden

University of Maryland Animal Science seminar (28)

Haplotype Probabilities

with Few Markers (12 SNP / chromosome)

Paul

University of Maryland Animal Science seminar (29)

Haplotype Probabilities

with More Markers (50 SNP / chromosome)

Paul

VanRaden

University of Maryland Animal Science seminar (30)

Haplotyping Program: findhap.f90

Population haplotyping

- Divide chromosomes into segments
- List haplotypes by genotype match
- Similar to FastPhase, IMPUTE, or long range phasing

Pedigree haplotyping

- Look up parent or grandparent haplotypes
- Detect crossovers, fix noninheritance
- Impute nongenotyped ancestors

USDA 2013 Dzs

Paul

VanRaden

University of Maryland Animal Science seminar (31)

Coding of Alleles and Segments

Genotypes

• 0 = BB, 1 = AB or BA, 2 = AA, 5 = ___ (missing)

Allele frequency used for missing

Haplotypes

• 0 = B, 1 = not known, 2 = A

Segment inheritance (example)

Son has haplotype numbers 5 and 8
Sire has haplotype numbers 8 and 21
Son got haplotype number 5 from dam

Paul

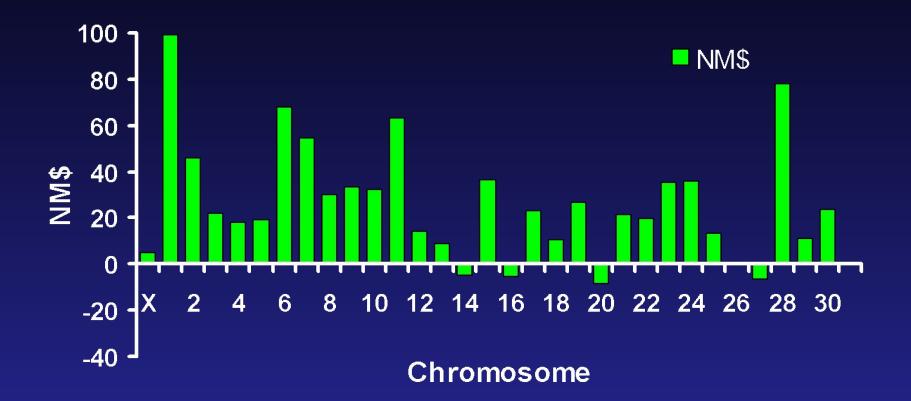
VanRaden

University of Maryland Animal Science seminar (32)

Population Haplotyping Steps

- Put first genotype into haplotype list
- Check next genotype against list
 - Do any homozygous loci conflict?
 - If haplotype conflicts, continue search
 - If match, fill any unknown SNP with homozygote
 - 2nd haplotype = genotype minus 1st haplotype
 - Search for 2nd haplotype in rest of list
 - If no match in list, add to end of list

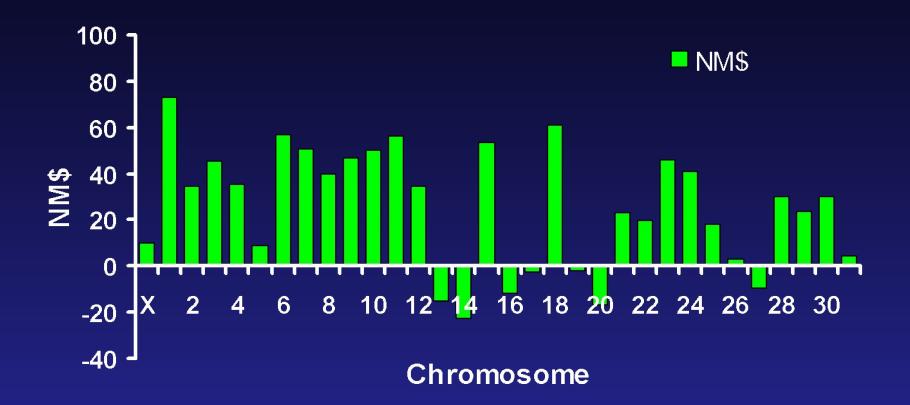
• Sort list to put frequent haplotypes 1st University of Maryland Animal Science seminar (33)


Check New Genotype Against List

1st segment of chromosome 15

Search for 1st haplotype that matches genotype: 022112222011221022021110220010110212202000102020120002021

Freddie - highest Net Merit bull

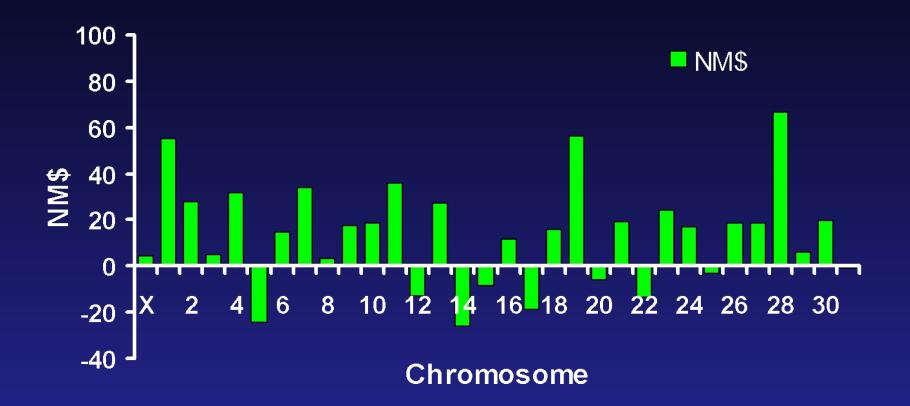


Paul

VanRaden

University of Maryland Animal Science seminar (35)

O Man – Sire of Freddie

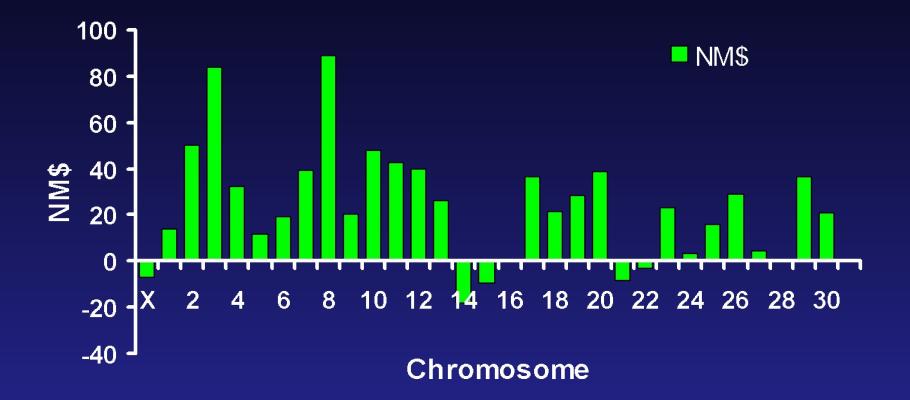


Paul

VanRaden

University of Maryland Animal Science seminar (36)

Die-Hard - maternal grandsire

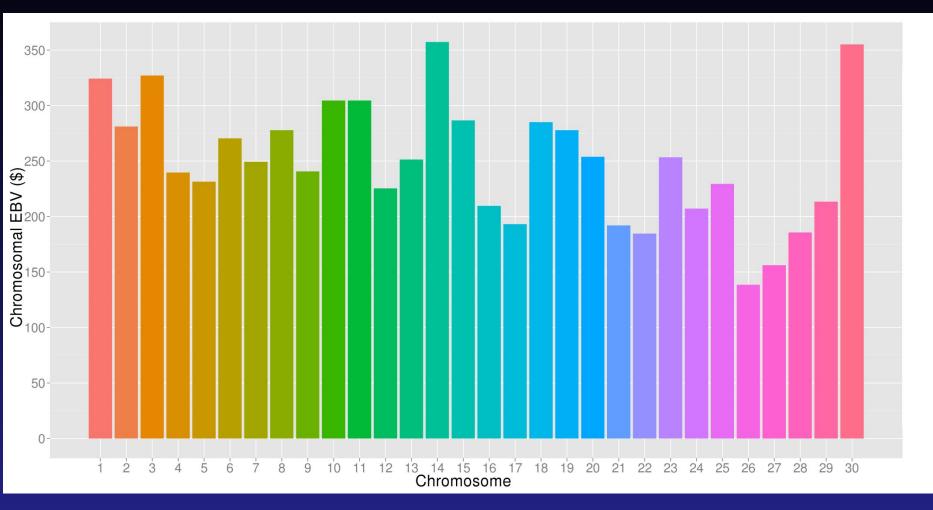


Paul

VanRaden

University of Maryland Animal Science seminar (37)

Planet – high Net Merit bull



Paul

VanRaden

University of Maryland Animal Science seminar (38)

What's the best cow we can make?

A "Supercow" constructed from the best haplotypes in the Holstein population would have an EBV(NM\$) of \$7515 USDA

2013 225

VanRaden

University of Maryland Animal Science seminar (39)

Conclusions

1-step genomic evaluations tested

Inversion avoided using extra equations
Converged well for JE but not for HO
Same accuracy, less bias than multi-step
Foreign data from MACE included

Further work needed on algorithms

Including genomic information
 Extending to all-breed evaluation

Paul

VanRaden

University of Maryland Animal Science seminar (40)

Conclusions

- Foreign data can add to national evaluations
 - In one step model instead of post-process
 High correlations of national with MACE
- Multi-trait all-breed model developed
 - Replace software used since 1989
 - Many new features added
 - Correlations ~.99 with traditional AM
 - Tested with 7 yield and health traits
 - Also tested with 14 JE conformation traits

Paul

Acknowledgments

- George Wiggans, Ignacy Misztal, and Andres Legara provided advice on algorithms
- Mel Tooker, Tabatha Cooper, and Jan Wright assisted with computation, program design, and ancestor discovery
- Members of the Council on Dairy Cattle Breeding provided data

Paul

VanRaden

University of Maryland Animal Science seminar (42)