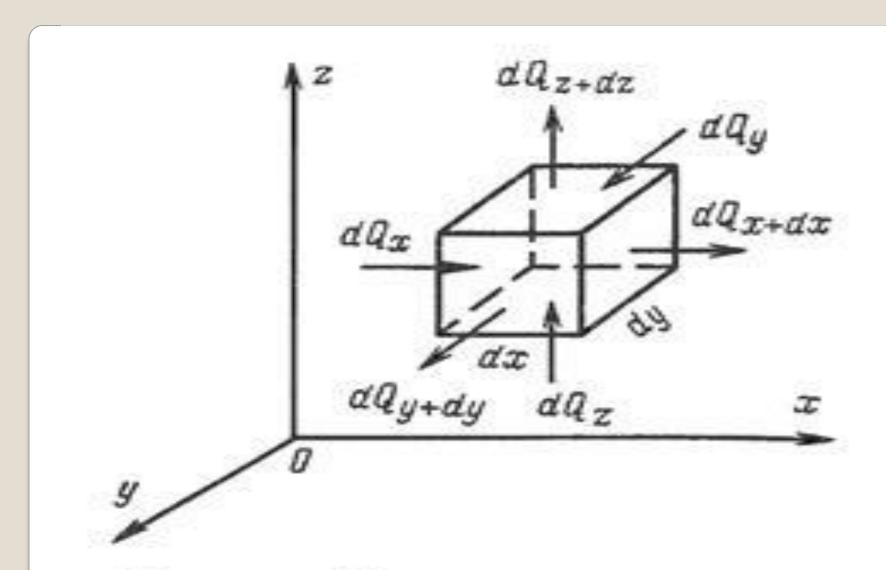
Дифференциальное уравнение теплопроводности

Группы СПД 21, 22


Лекция 2

закон Фурье $q = -\lambda$ grad T

закон сохранения энергии

Дифференциальное уравнение теплопроводности

 $cp(dT/dt) = div(\lambda gvadT) + F(M, t)$

К выводу дифференциального уравнения теплопроводности

$$Q_x' = -\lambda \cdot \frac{\partial T}{\partial x} \cdot dydz$$

$$Q_x'' = -\lambda \cdot \frac{\partial (T + dT)}{\partial x} dy dz = -\lambda \frac{\partial T}{\partial x} dy dz - \lambda \frac{\partial^2 T}{\partial x^2} dx dy dz$$

$$Q_x d\tau = (Q_x' - Q_x'') d\tau = \lambda \frac{\partial^2 T}{\partial x^2} dx dy dz d\tau = \lambda \frac{\partial^2 T}{\partial x^2} dV d\tau$$

$$Q_y d\tau = \lambda \frac{\partial^2 T}{\partial y^2} dV d\tau$$

$$Q_z d\tau = \lambda \frac{\partial^2 T}{\partial z^2} dV d\tau$$

$$Qd\tau = Q_x d\tau + Q_y d\tau + Q_z d\tau =$$

$$= \lambda \frac{\partial^2 T}{\partial x^2} dV d\tau + \lambda \frac{\partial^2 T}{\partial y^2} dV d\tau + \lambda \frac{\partial^2 T}{\partial z^2} dV d\tau =$$

$$= \lambda dV \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) d\tau = \lambda dV \nabla^2 T d\tau$$

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$
 - оператор Лапласа

Энтальпия

• Энтальпия - это определенное свойство вещества, оно является мерой энергии, накапливаемой веществом при его образовании.

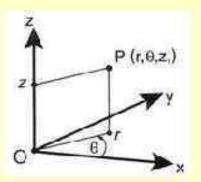
 Величина, характеризующая теплосодержание - ∆ Н количество теплоты = изменение энтальпии - ∫VdP

$$\lambda dV \nabla^2 T d\tau + q_V d\tau dV = \rho dV c dT [Дж]$$

 $q_v^{}$ — мощность внутренних источников [Вт/м 3]

$$\frac{dT}{d\tau} = \frac{\lambda}{\rho c} \nabla^2 T + \frac{q_V}{\rho c}$$

$$a = \frac{\lambda}{\rho c}$$


$$\frac{dT}{d\tau} = a\nabla^2 T + \frac{q_V}{\rho c}$$

$$\frac{\partial T}{\partial \tau} = a \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{q_V}{\rho c}$$

Дифференциальное уравнение теплопроводности.

Для цилиндрической:

$$\Delta T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \Theta^2} + \frac{\partial^2 T}{\partial z^2}$$

Для сферической:

$$\Delta T = \frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2 \sin^2 \phi} \frac{\partial^2 T}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial T}{\partial \phi} \right)$$

плотность

Она тем меньше, чем меньше атомная масса металла и чем больше радиус атома

ЛЕГКИЕ

Li Mg Al

Плотность металлов

Металл	Плотность г/см ³	Металл	Плотность г/см³
Магний	1,74	Железо	7,87
Алюминий	2,70	Медь	8,94
Титан	4,50	Серебро	10,50
Цинк	7,14	Свинец	11,34
Олово	7,29	Золото	19,32

легкие (плотность не более 5 г/см3) - магний, алюминий, титан и др.:

тяжелые - (плотность от 5 до 10 г/см ³) - железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);

очень тяжелые (плотность более 10 г/см ³) - молибден, вольфрам, золото, свинец и др.

Удельная теплоемкость

 физическая величина, которая численно равна количеству теплоты, которое необходимо для нагревания

вещества массы 1

$$[c] = 1 \frac{\text{Дж}}{\text{K} \cdot \text{C}}$$

<u>Теплоёмкость</u> тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус:

$$C = \frac{dQ}{dT}$$

Размерность Tennoemkoctu: [C] = Дж/К.

Удельная теплоёмкость (с) — количество теплоты, необходимое для нагревания единицы массы вещества на один градус.

$$[c] = Дж/кг·К.$$

Удельная теплоёмкость некоторых веществ, Дж / кг * С.

Золото	130	Железо	460	Масло подс.	1700
Ртуть	140	Сталь	500	Лёд	2100
Свинец	140	Чугун	540	Керосин	2100
Олово	230	Графит	750	Эфир	2350
Серебро	250	Стекло лаб.	840	Дерево (дуб)	2400
Медь	400	Кирпич	880	Спирт	2500
Цинк	400	Алюминий	920	Вода	4200

Объёмная теплоёмкость

$$c'=\frac{c}{V}$$
,

где C — теплоёмкость, V — объём тела при нормальных условиях.

Объемная теплоемкость металлов

	Mg	AI	Ti	Fe	Cu
С [кДж/кг град]	1,03	0,87	0,47	0,46	0,4
ρ [кг/м^3]	1738	2700	4500	7874	8940
Ср [Дж/см^3 град]	1,79	2,349	2,115	3,622	3,576

Виды удельной теплоемкости

массовая

$$C = \frac{C}{m} \qquad \frac{\mathcal{J} \mathcal{K}}{\kappa \varepsilon \cdot K}$$

• объёмная

$$c' = \frac{C}{V}$$

$$c' = \frac{C}{V} \qquad \left[\frac{\mathcal{J} \mathcal{K}}{M^3 \cdot K} \right]$$

мольная

(z - количество молей)

$$c_{\mu} = \frac{C \square \cancel{D} \cancel{H} \cancel{E}}{\cancel{Z} \cancel{K} \cancel{M} \cancel{O} \cancel{D} \cancel{K} \cdot \square}$$

Взаимосвязь между массовой и мольной:
$$c = \frac{C}{m} = \frac{c}{\rho \cdot V} = \frac{c'}{\rho}$$

Зависимость теплоёмкости от температуры

■ Теплоемкость меняется с температурой, т.к. меняется внутренняя энергия тела. Опытные данные замера теплоёмкости обычно представляют в виде интерполяционных функций:

$$Cp = a + bT + \frac{c'}{T^2}$$
 или $Cv = a + bT + cT^2 + dT^3$

 Среднее значение теплоёмкости может быть вычислено графически, как высота прямоугольника, равновеликого площади под кривой на графике изменения истинной теплоемкости от температуры.

$$\overline{C_p} = S / (T_2 - T_1)$$

Величина
$$a = \frac{\lambda}{c\rho}$$

называется

температуропроводностью.

• **Температуропроводность** характеризует скорость изменения температуры в нестационарных процессах теплопроводности.

$$[a] = \frac{M^2}{c}$$

Коэффициент температуропроводности

$$\frac{dt}{d\tau} = a\nabla^2 t$$
 , где $a = \frac{\lambda}{c\rho}$

Коэффициент температуропроводности а (м²/с) представляет собой плотность теплового потока при единичном температурном градиенте, отнесенную к плотности вещества и к его теплоемкости.

Коэффициент *а* пропорционален скорости изменения температуры или скорости распространения изотермической поверхности в теле. При прочих равных условиях скорее нагреется или охладится то тело, у которого больше *а*.

ФГБОУ ГУМРФ

Температуропроводность металлов

	Mg	AI	Ti	Fe	Cu	Au
λ [Вт/см град]	1,56	2,1	0,22	0,74	3,9	3,12
Ср [Дж/см^3 град]	1,8	2,4	2,1	3,6	3,6	2,3
a [CM^2/C]	0,87	0,89	0,1	0,2	1,1	1,35

Дифференциальное уравнение теплопроводности. Краевые условия

По закону сохранения энергии изменение внутренней энергии среды в объеме V равно потере тепла через поверхность S, ограничивающую данный объем:

$$-\int_{S} (\vec{q}\vec{n})dS$$

Следовательно:
$$\frac{\partial}{\partial t} \int_{V} \rho c T dV = -\int_{S} (\vec{q} \vec{n}) dS + \int_{V} Q_{V} dV =$$

$$= \int_{S} (\lambda \operatorname{grad} T \vec{n}) dS + \int_{V} Q_{V} dV$$

Дифференциальное уравнение теплопроводности. Краевые условия

Поверхностный интеграл преобразуем по формуле Гаусса-Остроградского:

$$\int_{V} div(grad(u))dV = \int_{S} \frac{\partial u}{\partial n} dS = \int_{S} (grad(u)\vec{n})dS$$

Тогда
$$\rho c \int_{V} \frac{\partial T}{\partial t} dV = \int_{V} div(\lambda grad(T))dV + \int_{V} Q_{V} dV$$

Ввиду произвольности объема получаем

$$\rho c \frac{\partial T}{\partial t} = div(\lambda grad(T)) + Q_V$$

Граничные условия

Четыре вида граничных условий:

1-го рода:

$$T = f \left(x, y, z, t\right).$$

3-го рода:

$$\lambda \frac{\partial T}{\partial n} = \alpha (T - T_c).$$

п- нормаль

2-го рода:

$$q = f(x, y, z, t)$$
.

4-го рода:

$$\lambda_1 \frac{\partial T}{\partial n} = \lambda_2 \frac{\partial T}{\partial n}.$$

Начальные условия

Начальные условия

Для решения конкретной задачи теплопроводности необходимо задать начальные и граничные условия

Совокупность начального и граничного условий называется краевыми условиями: начальное условие - временное краевое условие, граничное - пространственное краевое условие

Начальное условие определяется заданием закона распределения температуры внутри тела:

$$T(x, y, z, 0) = f(x, y, z)$$

Для большинства задач принимают равномерное распределение температуры в начальный момент времени

$$T(x, y, z, 0) = const$$

Граничные условия

Граничное условие первого рода состоит в задании распределения температуры по поверхности тела в любой момент времени

$$T_S = T(x, y, z, t) = f(x, y, z, t)$$

В частном случае $T_s = const$

Граничное условие второго рода состоит в задании плотности теплового потока для каждой точки поверхности тела как функции времени:

$$q_S = -\lambda \frac{\partial T}{\partial n} = f(x, y, z)$$

Например: Случай теплообмена при нагревании тел в высокотемпературных печах, где передача тепла в основном происходит при помощи излучения

Граничные условия

Граничное условие третьего рода характеризует закон конвективного теплообмена между поверхностью тела и окружающей средой при постоянном потоке тепла

$$q_S = -\lambda \frac{\partial T}{\partial n} = \alpha (T_S - T_f)$$

где T_f - температура окружающей среды, а - коэффициент теплообмена

Граничное условие четвертого рода соответствует теплообмену поверхности тела с окружающей средой (конвекция между телом и жидкостью) или теплообмену соприкасающихся твердых тел, когда температура соприкасающихся поверхностей одинакова. Данное условие сводится к одновременному заданию равенства температур и тепловых потоков на границе раздела, когда решается задача о теплообмене двух сред.

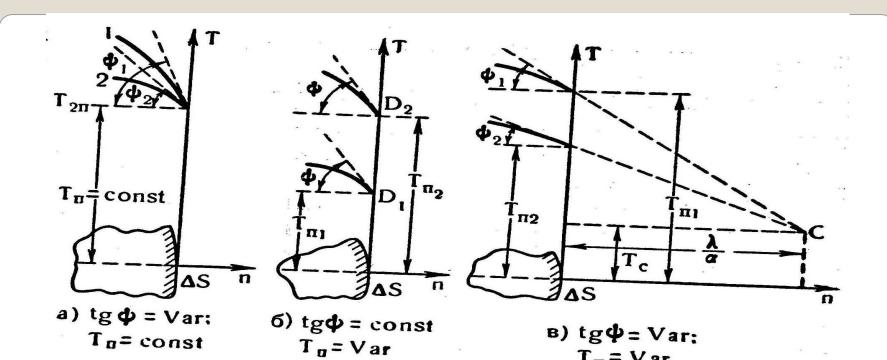
$$T_{1S} = T_{2S}$$
 $-\lambda_1 \frac{\partial T_1}{\partial n}\Big|_{S} = -\lambda_2 \frac{\partial T_2}{\partial n}\Big|_{S}$

Граничные условия (размерный вид)

Граничные условия первого рода

$$t = t_c$$

Граничные условия второго рода


$$q = q_n = -\lambda \left(\frac{\partial T}{\partial n}\right)$$

Граничные условия третьего рода

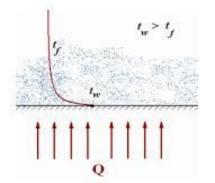
$$q = -\lambda \left(\frac{\partial T}{\partial n} \right) = \alpha \left(t_c - t_{sc} \right)$$

Граничные условия четвертого рода

$$\lambda_1 \left(\frac{\partial T_1}{\partial n} \right) = \lambda_2 \left(\frac{\partial T_2}{\partial n} \right).$$

ΔS

 $t_g \phi_m = const$


 \mathbf{r}) $T_n = Var$

 $T_{tt} = T_{c}(\tau)$

 $T_{u} = Var$

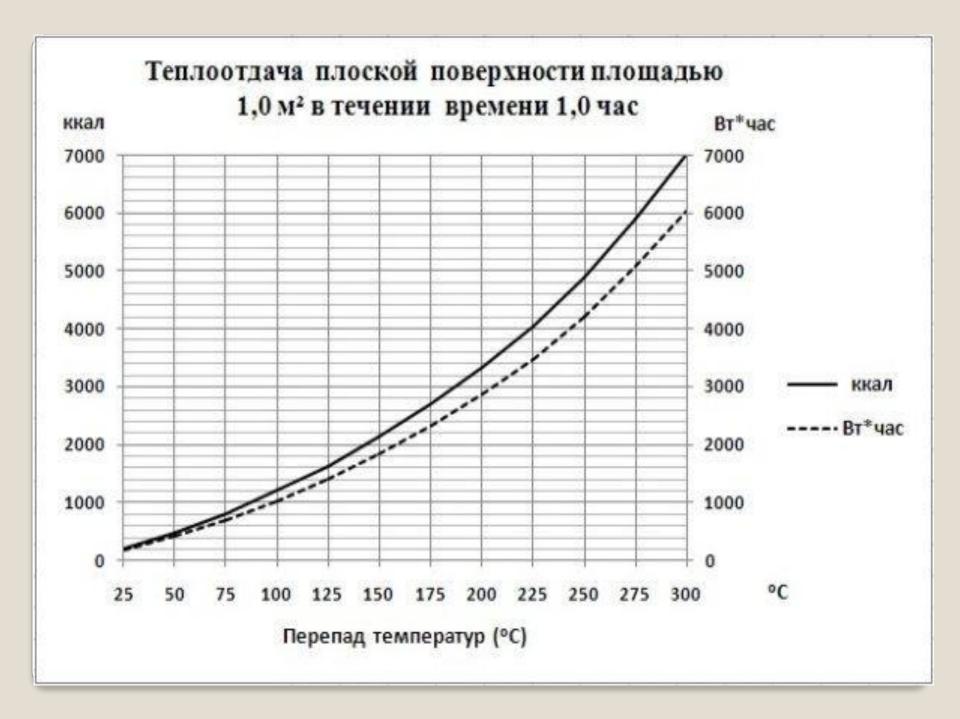
Вид теплопередачи	Особенности теплопередачи	Рисунок
Теплопроводность	•Требует определенного времени •Вещество не перемещается •Атомно-молекулярный перенос энергии	
Конвекция	•Переносится вещество струями •Наблюдается в жидкости и газе •Естественная, вынужденная •Теплый вверх, холодный вниз	
Излучение	•Излучают все нагретые тела •Осуществляется в полном вакууме •Излучается, отражается, поглощается	

Конвективная теплоотдача

Теплоотдача (конвективная теплоотдача) - конвективный теплообмен между твердой поверхностью и окружающей средой (жидкостью или газом).

Установлено опытным путем, что количество передаваемой теплоты зависит от физической природы среды, свойств границы среды и твердого тела, разности температур между средой и поверхностью.

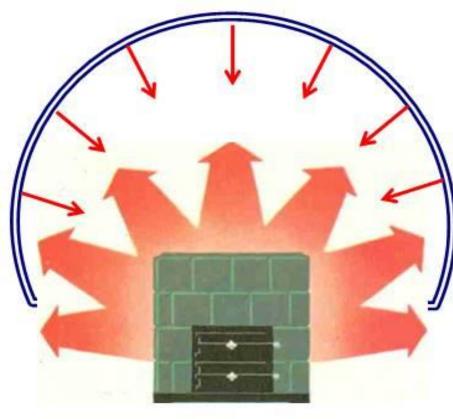
Основной закон теплоотдачи (Ньютона-Римана) -


плотность теплового потока на границе жидкости (газа) и твердой поверхности пропорциональна разности их температур:

$$q = \alpha \cdot (t_w - t_f)$$

где а-коэффициент теплоотдачи; tw-температура поверхности; tf -температура жидкости или газа.

Коэффициент теплоотдачи


- Коэффициент теплоотдачи α равен количеству тепла, переданного в единицу времени от стенки площадью 1 м² к жидкости (или от жидкости к стенке) при разности температур стенки и жидкости (вдали от стенки) равной 1°.
- Коэффициент теплоотдачи не является физической константой, зависит от большого количества факторов.

ЛУЧИСТЫЙ ТЕПЛООБМЕН

Все тела излучают и поглощают лучистую энергию. Интенсивность *теплового* излучения зависит от температуры и

свойств поверхности тела:

$$E = \varepsilon \sigma_o T^4 \quad Bm / M^2$$

$$q_{1-2} \Box (T_1^4 - T_2^4), Bm/m^2$$

В отличие от теплопроводности и конвекции, здесь нет необходимости в контакте тел, участвующих в обмене; максимальная интенсивность ЛТО — в вакууме.

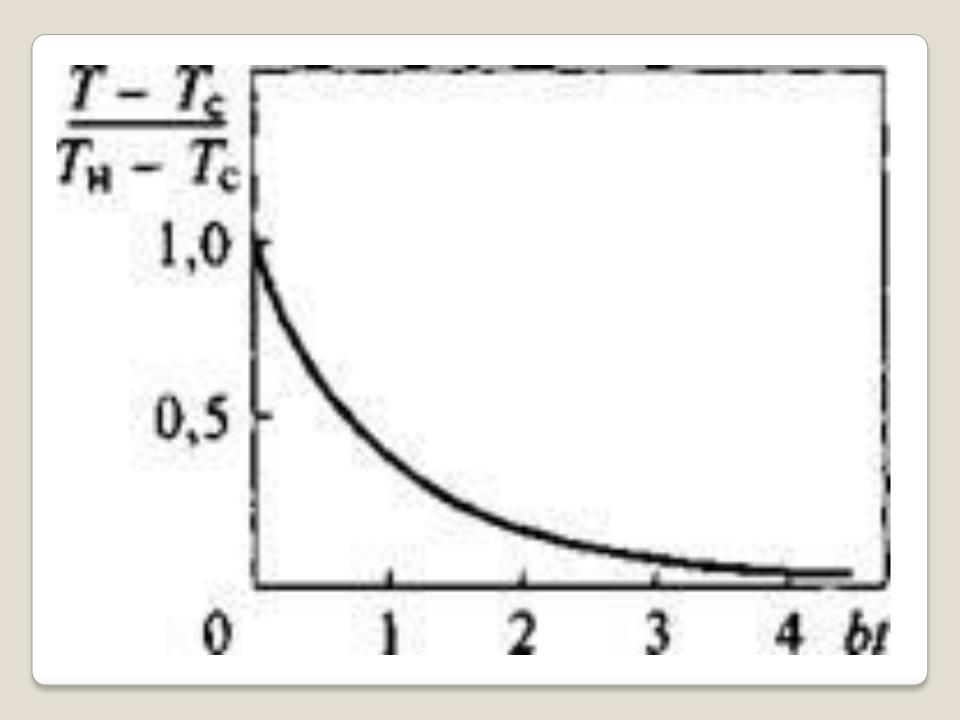
При наличие между телами разделяющей среды лучистый теплообмен сопровождается теплопроводностью и конвекцией (сложный теплообмен).

Суммарный коэффициент теплоотдачи лучеиспусканием и конвекцией:

$$\alpha = \alpha^{\mathrm{II}} + \alpha^{\mathrm{K}}$$

 α_к — коэффициент теплоотдачи конвекцией, определяемый по соответствующим формулам для свободного или вынужденного движения

$$\alpha_{_{\rm I\!I}} = \frac{Q_{_{\rm I\!I}}}{(T_1 - T_2)A} = \frac{C_{1-2} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]}{(T_1 - T_2)}$$


$$dQ = q_S \cdot 2F \cdot dt = \alpha T \cdot 2Fdt$$

$$-dT = \frac{dQ}{c\rho\delta F} \qquad \frac{\partial T}{T} = -\frac{2\alpha}{c\rho\delta}dt = -bdt$$

$$b = \frac{2 \propto}{c\rho\delta}$$

$$lnT = -bt + C \qquad C = lnT_0$$

$$T = T_0 \cdot e^{-bt}$$

Пусть $T_0 = 250$ °C; T = 200°C; $c = 0.55 \ \partial x / K \cdot z$; $\rho = 7.8 \ z / cm^3$; $\alpha = 0.0025 \ \partial x / cm^2 cek \cdot spad$

$$b = \frac{2 \propto}{c\rho\delta} = 0,000291 \quad \left[\frac{1}{\text{cek}}\right]$$

$$t = -\frac{1}{b} \ln \frac{T}{T_0} = -\frac{1}{0,0025} \ln \frac{200}{250} = 767 \text{ сек} \approx 13 \text{ мин}$$

GLOSSARY

Fourier's law	закон Фурье
thermal conductivity equation	уравнение теплопроводности
energy conservation law	закон сохранения энергии
density	плотность
specific thermal capacity	удельная теплоемкость
temperature diffusivity	температуропроводность
convection	конвекция
convective heat exchange	теплоотдача
temperature differential	разность температур
temperature rise	рост температуры