

Гармонические колебания. Затухающие и вынужденные колебания

Энергия гармонического осциллятора

- Свободные колебания любого осциллятора в отсутствие трения будут гармоническими, если действующая в нем сила (или момент силы) является квазиупругой, т. е. силой, направленной к положению равновесия и зависящей от смещения из этого положения линейно.
- Рассмотрим материальную точку массы m, колеблющейся под действием квазиупругой силы $F_x = -\varkappa x$. Потенциальная и кинетическая энергии частицы имеют в данном случае такой вид:

$$U = \kappa x^{2}/2 = (\kappa a^{2}/2)\cos^{2}(\omega_{0}t + \alpha),$$

$$K = m\dot{x}^{2}/2 = (ma^{2}\omega_{0}^{2}/2)\sin^{2}(\omega_{0}t + \alpha).$$
(5.12)

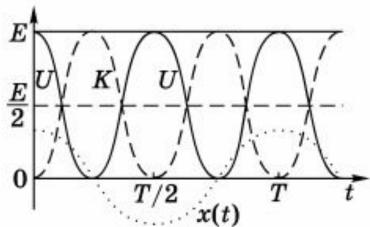
Из этих соотношений видно, что значения U и K сдвинуты друг относительно друга по фазе на $\pi/2$: когда U максимальна, K минимальна, и наоборот. При этом полная энергия сохраняется:

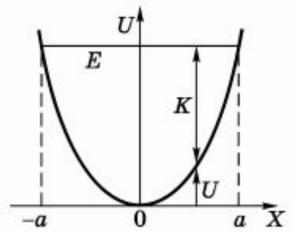
$$E = U + K = \kappa a^2 / 2 = ma^2 \omega_0^2 / 2,$$
 (5.13)

• Принимая во внимание (5.13), формулы (5.12) можно переписать так:

$$U = E \cos^2(\omega_0 t + \alpha), \quad K = E \sin^2(\omega_0 t + \alpha).$$
 (5.14)

• Из графиков видно, что в процессе колебаний происходит переход потенциальной энергии в кинетическую и обратно





Сложение колебаний одного направления

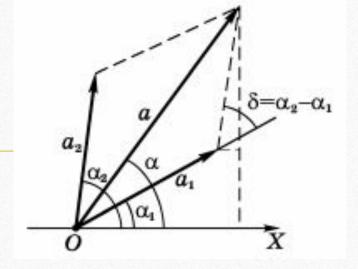
- Можно изобразить колебания графически с помощью вектора-амплитуды а, вращающегося с угловой скоростью ω против часовой стрелки. Если в момент t = 0 вектор а образует с осью X угол α, то проекция вектора а на ось X изменяется со временем по гармоническому закону. Такой способ представления колебаний, называемый векторной диаграммой, удобно использовать при сложении колебаний одного направления.
- 1) Случай, когда $\omega_1 = \omega_2 = \omega$. В этом случае результирующее смещение $x = x_1 + x_2 = a_1 \cos(\omega t + \alpha_1) + a_2 \cos(\omega t + \alpha_2)$.
- Каждое из складываемых колебаний можно представить с помощью векторов $\mathbf{a_1}$ и $\mathbf{a_2}$, сумма проекций которых на ось X равна проекции суммы векторов $\mathbf{a_1} + \mathbf{a_2} = \mathbf{a}$. Поскольку векторы и вращаются с одной и той же угловой скоростью $\mathbf{\omega}$, с той же угловой скоростью вращается и вектор \mathbf{a} . Значит результирующее колебание является тоже гармоническим и имеет вид

$$x = a\cos(\omega t + \alpha),$$

• где а и α находим из рисунка

$$a^2 = a_1^2 + a_2^2 + 2a_1a_2 \cos \delta$$
,

$$tg \alpha = \frac{a_1 \sin \alpha_1 + a_2 \sin \alpha_2}{a_1 \cos \alpha_1 + a_2 \cos \alpha_2}.$$



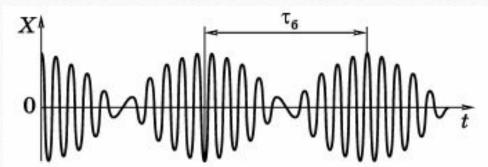
• Разность фаз δ в данном случае не зависит от времени и равна

$$\delta = \alpha_2 - \alpha_1.$$

• При сложении синфазных колебаний ($\delta = 0$) **а** максимально, при сложении же «противофазных» колебаний ($\delta = \pi$) **а** минимально:

$$a_{\text{MAKC}} = a_1 + a_2$$
, $a_{\text{MHH}} = |a_1 - a_2|$.

2) Случай, когда $|\omega_1| = \omega_2| << \omega_1$ и ω_2 . Поскольку теперь векторы $\mathbf{a_1}$ и $\mathbf{a_2}$ вращаются с немного отличающимися угловыми скоростями, модуль результирующего вектора \mathbf{a} будет медленно изменяться от $\mathbf{a}_{\text{макс}}$ до $\mathbf{a}_{\text{мин}}$. Результирующее колебание уже не является гармоническим, однако его все же можно рассматривать как гармоническое, но с медленно и периодически меняющейся амплитудой. Такие колебания называют биениями. Для случая $\mathbf{a_1} = \mathbf{a_2}$ получим график:



• Амплитуда колебаний описывается той же формулой, что в случае 1, но входящая в нее разность фаз зависит от времени:

$$\delta = (\alpha_2 + \omega_2 t) - (\alpha_1 + \omega_1 t) = (\alpha_2 - \alpha_1) + (\omega_2 - \omega_1) t.$$

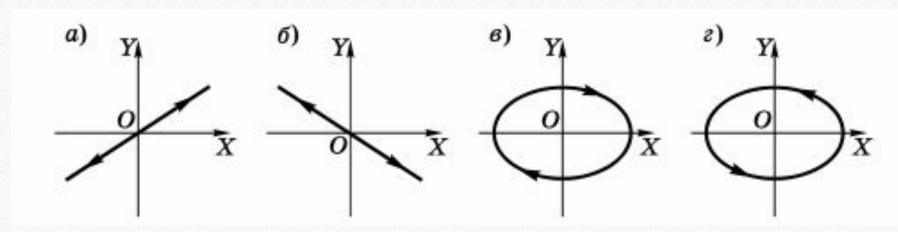
• Промежуток времени между соседними моментами, когда амплитуда a максимальна, называют периодом биений τ_6 .

Сложение взаимно перпендикулярных колебаний

• Рассмотрим случай, когда частоты складываемых колебаний одинаковы. Пусть координаты х и у частицы изменяются по закону

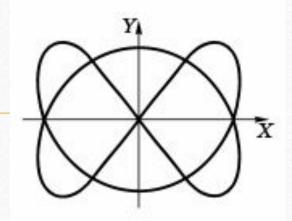
$$x = a \cos \omega t$$
, $y = b \cos(\omega t + \delta)$. (5.15)

- Траекторией частицы при этом является эллипс, вид которого определяется отношением амплитуд a и b и разностью фаз δ . Рассмотрим четыре частных случая:
- a) $\delta = 0$, y = (b/a)x 6) $\delta = \pi$, y = -(b/a)x 6) $\delta = \pi/2$, $x^2/a^2 + y^2/b^2 = 1$ 2) $\delta = 3\pi/2$ ($-\pi/2$)



Фигуры Лиссажу

• Если частоты взаимно перпендикулярных колебаний не одинаковы и относятся как целые числа, то траектории результирующего движения имеют более сложные формы. Их называют фигурами Лиссажу. На рисунке — пример для отношения частот у : х = 3 : 2. При сложении взаимно перпендикулярных колебаний полная энергия



$$E = \left(\frac{\varkappa_1 x^2}{2} + \frac{\varkappa_2 y^2}{2}\right) + \frac{m}{2}(\dot{x}^2 + \dot{y}^2) = E_x + E_y, \tag{5.16}$$

складывается из энергий каждого колебания и равна, согласно (5.13),

$$E = \frac{m}{2} (a^2 \omega_x^2 + b^2 \omega_y^2). \tag{5.17}$$

Уравнение затухающих колебаний

В любой реальной колебательной системе есть силы сопротивления (трения), действие которых приводит к уменьшению амплитуды и энергии колебаний. Такие свободные колебания называют затухающими. Будем исходить из основного уравнения динамики, полагая, что на частицу массы m действует кроме квазиупругой силы $(-\varkappa x)$ сила сопротивления, пропорциональная скорости частицы, $F_x = -r\dot{x}$, где r — коэффициент сопротивления. Тогда уравнение движения будет иметь вид

$$m\ddot{x} = -\varkappa x - r\dot{x},\tag{5.18}$$

• или

$$\ddot{x} + 2\beta\dot{x} + \omega_0^2 x = 0, \qquad (5.19)$$

• где $2\beta = r/m$, $\omega_0^2 = \varkappa/m$. ω_0 - это частота свободных колебаний без трения. Частоту ω_0 называют собственной частотой осциллятора, а β - коэффициентом затухания. Уравнение (5.19) при условии $\beta < \omega_0$ описывает затухающие колебания. Его решение имеет вид

(5.20)

$$x = a_0 e^{-\beta t} \cos(\omega' t + \alpha),$$

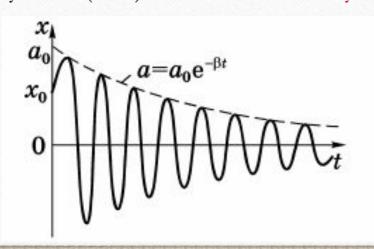
• где a_0 и α - постоянные, определяемые начальными условиями $x(0) = x_0$ и $\dot{x}(0) = \dot{x}_0$, ω' - частота затухающих колебаний:

$$\omega' = \sqrt{\omega_0^2 - \beta^2} \,. \tag{5.21}$$

• По графику видно, что эта функция не периодическая. Тем не менее величину $T = 2\pi/\omega'$ принято называть периодом затухающих колебаний:

$$T = 2\pi/\sqrt{\omega_0^2 - \beta^2}. \tag{5.22}$$

• Множитель перед косинусом в (5.20) называют амплитудой затухающих колебаний



Характеристики затухания

• Кроме коэффициента β затухание характеризуют и другими величинами. 1. Время релаксации τ - это время, за которое амплитуда колебаний уменьшается в ℓ раз. Из выражения $a=a_0e^{-\beta t}$ видно, что

$$\tau = 1/\beta. \tag{5.23}$$

• 2. Логарифмический декремент затухания. Его определяют как

$$\lambda = \ln \frac{a(t)}{a(t+T)} = \beta T, \qquad (5.24)$$

• где Т - период затухающих колебаний. Из предыдущих двух формул следует, что

$$\lambda = 1/N_{e} \tag{5.25}$$

- N_e число колебаний за время τ , в течение которого амплитуда уменьшится в e раз.
- 3. Добротность осциллятора. По определению,

$$Q = \pi/\lambda = \pi N_e . ag{5.26}$$

Уравнение вынужденных колебаний

• Чтобы возбудить в системе незатухающие колебания, необходимо компенсировать потери энергии, обусловленные силами сопротивления (трения). Это можно осуществить, воздействуя на систему переменной внешней силой F, изменяющейся в простейшем случае по гармоническому закону $F_x = F_m \cos \omega t$. Возникающие при этом колебания и называют вынужденными. Теперь на колеблющуюся частицу будут действовать одновременно три силы: квазиупругая (- \varkappa x), сила сопротивления (-rx) и внешняя, вынуждающая (F_x). Согласно основному уравнению динамики,

$$m\ddot{x} = -\kappa x - r\dot{x} + F_m \cos \omega t, \qquad (5.27)$$

• или в более удобной форме

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_m \cos \omega t, \qquad (5.28)$$

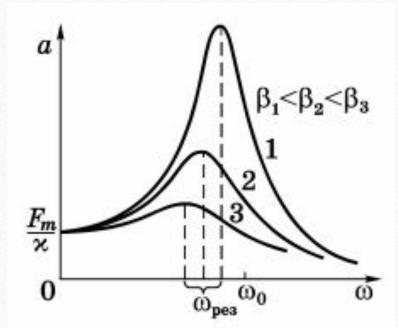
где

$$2\beta = r/m$$
, $\omega_0^2 = \varkappa/m$, $f_m = F_m/m$.

Резонанс

• Рассмотрим графики зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы $a(\omega)$ для трех коэффициентов затухания. Видно, что $a(\omega)$ имеет максимум при частоте, которую легко найти из условия $da/d\omega = 0$. Эту частоту называют резонансной, а существование максимума амплитуды a - явлением

резонанса.



 $\omega_{\text{pe3}} = \sqrt{\omega_0^2 - 2\beta^2} , \qquad (5.29)$

Соответствующие графики принято называть резонансными кривыми. Выражение для амплитуды при резонансе имеет вид

$$a_{\text{MAKC}} = \frac{f_m}{2\beta\sqrt{\omega_0^2 - \beta^2}}.$$
 (5.30)

Чем меньше затухание системы, тем более ярко выражен резонанс.

