# BY

**DIABETES TYPE 1** 

Ganeshan surendar LA -2 - CO - 171 (2)

## **DEFINITION**

Metabolic disorder of multiple etiologies characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects of insulin secretion, insulin action or both.

# **OLD CLASSIFICATION (1985)**

- Type 1, Insulin-dependent (IDDM)
- Type 2, Non Insulin-dependent (NIDDM)
  - obese
  - non-obese
  - MODY (between 18 to 25 years)
- IGT
- Gestational Diabetes Mellitus

# **New Classification (WHO)**

- Is based on etiology not on type of treatment or age of the patient.
- Type I(Beta cell destruction-absolute insulin deficiency)

Immune mediated Idiopathic

Type II

predominant insulin resistant with relative insulin deficiency predominant secretory defect with insulin resistance

# Other specific Types

Genetic defect of beta cell function
 MODY (maturity onset diabetes of the young)
 syndromes
 mitochondrial mutions

Infections
 Congenital rubella
 CMV

Disease of pancreas

**Pancreatitis** 

Trauma/pancreatectomy

Neoplasia

Cystic fibrosis

# Other specific Types

- Endocrinopathies
   Acromegaly
   Cushing's Syndrome
   Pheochromocytoma
- Drug or chemical induced Nicotinic acid Glucocorticoids Thiazides
- Genetic disorder with diabetes
   Down syndrome
   Turner syndrome
   Klinefelter syndrome
   Prader willi syndrome
- Gestational Diabetes Mellitus
- Neonatal Diabetes Mellitus

# **Type 1 Diabetes Mellitus**

Formerly called insulin-dependent diabetes mellitus (IDDM) or juvenile diabetes

T1DM is characterized by low or absent levels of endogenously produced insulin

## **EPIDEMIOLOGY**

- Most common endocrine disorder of childhood and adolescence.
- The onset occurs predominantly in childhood, with 2 peak one 5-7 yr, and another at puberty but it may present at any age.
- In india an average prevalence of Type I diabetes is 10 per 100000 population.

### Risk of development of Type 1 DM

- If mother has Type1DM risk in child is 2%.
- If father is affected risk is 7%.
- In a sibling of the index case is estimated as 6%.
- Risk is 6-10% in diazygotic twins
   & 30-65% in monozygotic twins

# Pathogenesis & Natural history

# The natural history includes distinct stages

- Initiation of autoimmunity
- 2) Preclinical autoimmunity with progressive loss of β-cell function
- 3) Onset of clinical disease
- Transient remission ("Honeymoon period")
- 5) Established disease
- 6) Development of complications

## The Pancreas



Beta Cells: secrete insulin.

Alpha Cells: secrete glucagon

Autoimmunity occurs in islet of Langerhans against the beta cells...



# **Pathogenesis of Type 1 Diabetes**



Time



### **CLINICAL PRESENTATIONS**

- DKA ( most common presentation in pediatrics)
- Classical symptom triad:
  - ✓ polyuria, polydipsia and weight loss
- Accidental diagnosis

## **DIAGNOSTIC CRITERIA**

 In symptomatic (polydipsia, polyurea, weight loss) children a random plasma glucose >11.1 mmol (200 mg) is diagnostic.

• Hemoglobin  $A_{1C} >= 6.5 \%$ 

Remember: acute infections in young non-diabetic children can cause hyperglycemia without ketoacidosis.

## **DIAGNOSTIC CRITERIA**

modified OGTT (oral glucose 1.75gm/kg max 75 gm) may be needed in

- Asymptomatic children with hyperglycemia (RBS >140)
- Symptomatic with hyperglycemia (RBS between 140 to 200)
- Fasting blood glucose level

# IGT (Impaired glucose tolerance)

6.0-6.9 mmol (100-126 mg/dl)

#### Diabetic

>=7.0 mmol (126mg/dl)

· 2 hours after oral glucose

# IGT (Impaired glucose tolerance)

7.8-11.0 mmol (140-200 mg/dl)

#### **Diabetic**

>=11.1 mmol (200 mg/dl)

### TREATMENT ELEMENTS

- Education
- Insulin therapy
- Glycemic control Monitoring
- Diet and meal planning
- Prevention and early dectection of complication

# **EDUCATION**

- Educate child & care givers about:
  - Diabetes type 1
  - life long Insulin therapy
  - self monitoring and maintaining records
  - Recognition of Hypoglycemia & DKA
  - Meal plan
  - Sick-day management
  - Possible long term complication

# **INSULIN Therapy**

#### Insulin

- A polypeptide made of 2 β-chains.
- Discovered by Bants & Best in 1921.
- Animal types (porcine & bovine) were used before the introduction of human-like insulin (DNA-recombinant types).
- Recently more potent insulin analogs are produced by changing aminoacid sequence.

# Rapid-acting Insulin

Examples: insulin lispro or insulin aspart

Onset: Begins to work at about 5 minutes

Peaktime: Peak is about 1 hour

<u>Duration</u>: Continues to work for about 2-4 hours

# Regular or Short-acting Insulin

Examples: insulin regular

Onset: Reaches the bloodstream within 30 minutes after injection.

<u>Peaktime</u>: Peaks anywhere from 2-3 hours after injection.

<u>Duration</u>: Effective for approximately 3-6 hours.

# Intermediate-acting Insulin

Examples:NPH, Lente

Onset: Reaches the blood stream about 2 to 4 hours after injection.

Peaktime: Peaks 4-12 hours later.

<u>Duration</u>: Effective for about 12 to 18 hours

# **Long-acting Insulin**

Examples: insulin glargine

Onset: Reaches the bloodstream 6-10 hours after injection

<u>Duration</u>: Usually effective for 20-24

hours



### **INSULIN CONCENTRATIONS**

- Insulin is available in different concentrations 40, 80 & 100 Unit/ml.
- WHO now recommends U 100/ml to be the only used insulin to prevent confusion.
- Special preparation for infusion pumps is soluble insulin 500 U/ml.

# Suggested target blood glucose range

|   | Time of checking       | Target plasma<br>glucose(mg/dl) |
|---|------------------------|---------------------------------|
| 1 | Fasting or preprandial | 90-145                          |
| 2 | Postprandial           | 90-180                          |
| 3 | Bedtime                | 120-180                         |
| 4 | Nocturnal              | 80-162                          |

For children<5 yrs of age 90-200mg/dl during the day time and between 150-200mg/dl at bed time and during the night are optimal

- Aim-To mimic natural pattern of insulin secretion
- Administration- insulin is administered subcutaneously using insulin syringes, pens, or insulin pumps.
- Dose-DKA/with overt symptoms:
   -Total daily dose(TDD)-0.8 to1 unit/kg/day

Incidentally diagnosed: at lower dose
Toddlers & pre-school (2-5 yrs)-0.2-0.4unit/kg/day
Pre-pubertal children(5-9 yrs)-0.5-0.8 unit/kg/day
Adolescents-(9-14 yrs) 0.8-1.5unit/kg/day

#### **Injection sites**

- Anterolateral thighs
- Anterior and lateral abdominal wall
- Posterior aspect of upper arms
- Superolateral aspects of buttocks.

(site rotation: following a regular pattern of using the different sites and different areas within the same site is important)

#### Insulin Injection Sites



- Regimes-
- Split mix regime (mixtard 30:70 or NPH 2/3 + Regular insulin 1/3; twice a daily)

2/3 dose-45 min BBF

1/3 dose-45 min BD

- 1 IU of Mixtard takes care of BS 50mg/dl above target
- Basal bolus regime with multiple daily injection(MDI)

30-50% of Total daily dose as one dose- long action (Glargine, Detemir)

3-4 doses of rapid insulin as remainder

Calculation of Bolus Dose -

- CIR (carbohydrate to insulin ratio)
  - Amount of carohydrate in gram covered by one unit of insulin
  - Initial calculation-500/Total daily dose

more accurate estimation is based on

- amount of carbohydrate consumed in a meal
- units of insulin administered
- pre and post prandial blood glucose

#### ISF-insulin sensitivity factor

- Reduction in blood glucose by one unit of insulin
- Initial calculation as 1800/Total daily dose
- For correcting Pre meal high sugar (actual BS- Target BS/ISF)

 Example for 10 yrs old 33 kg wt child Total insulin requirement 0.8 IU \* 33=26 IU Carbohydrate to Insulin Ratio = 500/26=20 Insulin sensitivity factor = 1800/26 = 70 Inj Glargine 40% = 11 IU If child is taking 80 gm carbohydrates in lunch, insulin needed is 80/ CIR =4 IU If pre lunch BS is 200 than to correct pre lunch BS insulin needed is 200-130/ISF So Inj lispro is given 5 IU before lunch.

# **Insulin Pump Therapy**

- Continuous subcutaneous insulin infusion
   (CSII) via battery-powered pumps provides
   a closer approximation of normal plasma
   insulin profiles.
- It accurately deliver a small baseline continuous infusion of insulin, coupled with parameters for bolus therapy.
- The bolus insulin determined by amount of carbohydrate intake and blood sugar level







# Monitoring of glycemic control

- Self monitoring of blood glucose(SMBG)
  - -fasting
  - -before and 2 hours after meals
  - -during night
- Real time continuous glucose monitoring
- Urinary Glucose
  - -Reflects glycemic level over the preceding several hours
  - -It is positive if renal theshold is exceeded.
  - -Crude indicator of hyperglycemia

# Monitoring of glycemic control

 Measuring ketones in urine-More sensitive and accurate

In-BG>250 mg/dl

Illness with fever and or vomiting abdominal pain, polyurea, drowsiness, rapid breathing

- Glycosylated Hemoglobin (HbA1C)
  - every 3-4 monthly

### **ADVERSE EFFECTS OF INSULIN**

- Hypoglycemia
- Lipoatrophy
- Lipohypertrophy
- Obesity
- Insulin allergy
- Insulin antibodies

## PRACTICAL PROBLEMS

- Non-availability of insulin in poor countries
- injection sites & technique
- Insulin storage & transfer
- Mixing insulin preparations
- Insulin & school hours
- Adjusting insulin dose at home
- Sick-day management
- Recognition & Rx of hypoglycemia at home

## Management on Sick days

- Insulin requirement may increase or decrease during illness.
- Fever, dehydration, and the stress of illness can cause hyperglycemia due to increase production of counterregulatory hormones, whereas vomiting and loss of appetite can lead to hypoglycemia.
- The risk of Ketosis is increased due to starvation and dehydration.

## Management on Sick days

- Take plenty of fluids.
- Blood glucose and urine ketones monitered frequently.
- "moderate" or "large" ketones in the urine in the presence of hyperglycemia indicate insulin deficiency and risk of DKA.
- Child should be given rapid acting analog or regular insulin and oral fluids and ketones should be rechecked in the next urine.
- If there is vomiting with hyperglycemia and large ketones, or persistent hypoglycemia, child should be taken to emergency department.

## Management on Sick days

| URINE KETONE<br>STATUS | INSULI<br>N | CORRECTION DOSE               | COMMENT                                                           |
|------------------------|-------------|-------------------------------|-------------------------------------------------------------------|
| Negative or small      | q2hr        | q2hr for glucose<br>>250mg/dl | Check ketones every other void                                    |
| Moderate to large      | q1hr        | q1hr for glucose >250 mg/dl   | Check ketones<br>each void go to<br>hospital if emesis<br>occurs. |

RBS 2hrly
INSULIN short acting (0.1u/kg) or if
RBS >250

## **DIET REGULATION**

- Regular meal plans with calorie exchange options are encouraged.
- 50-60% of required energy to be obtained from complex carbohydrates.
- Distribute carbohydrate load evenly during the day preferably 3 meals & 2 snacks with avoidance of simple sugars.
- Encouraged low salt, low saturated fats and high fiber diet.

## **DIET REGULATION**

- Avoid simple sugar
- In patient with split mix regime 6 meals-3 major(70% of total calories)
   -3midmeal(30% of total calories)
- In children with MDI(multiple dose regime)
   mid meal is not essential
   majority of the calories should be consumed as a part of the meals,
   mid meal should have less than 10-15 gm of carbohydrate.

## **DIET REGULATION**

#### Glycemic Index:

- ranking of carbohydrates on a scale from 0 to 100 according to the extent to which they raise blood sugar levels after eating.
- Foods with a high GI are those which are rapidly digested and absorbed and result in marked fluctuations in blood sugar levels. Like corn flakes, potato, watermelon, biscuits, chocolates
- Low-GI foods, by virtue of their slow digestion and absorption, produce gradual rises in blood sugar and insulin levels, and have proven benefits diabetics. Like Most fruits and vegetables (except potato & water melon), pasta, pulses, milk, curd,

## **EXERCISE**

- Decreases insulin requirement in diabetic subjects by increasing both sensitivity of muscle cells to insulin & glucose utilization.
- It can precipitate hypoglycemia in the unprepared diabetic patient.

### **PITFALLS OF MANAGEMENT**

- Delayed diagnosis of IDDM
- The honey-moon period
- Problems with diagnosis & treatment of DKA & hypoglycemia
- Somogyi's effect & dawn phenomenon may go unrecognized.

## Dawn Phenomenon

- Blood glucose levels increase in early morning hours before breakfast due to decline in insulin levels. Which results in elevated morning glucose.
- This phenomenon mainly caused by overnight growth hormone secretion and increased insulin clearance.
- It's a normal physiologic process seen in most adolescents without diabetes, who compensate with more insulin output. Child with TIDM cannot compensate.

## Somogyi Phenomenon

- It's a theoretical rebound from latenight or early morning hypoglycemia, thought to be from an exaggerated counter-regulatory response.
- Continuous glucose monitoring systems or night time blood glucose may help clarify ambiguously elevated morning glucose levels.

### **COMPLICATIONS OF DIABETES**

- Acute:
  - **≻DKA**
  - ➤ Hypoglycemia
  - ➤ Hyperosmolar Coma
- Late-onset:
  - Retinopathy
  - Neuropathy
  - Nephropathy
  - ■Ischemic heart disease & stroke

# Guidelines regarding monitoring for complications

| Parameter              | Recommendation                                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------|
| HbA1c                  | 3-4 times per year                                                                                           |
| Height and Weight      | 3-4 times per year                                                                                           |
| Nutritional counseling | At diagnosis, 4-6 weeks later ,then annually.                                                                |
| Lipid profile          | Prepubertal child :every 5 yr<br>Pubertal child: within 6-12<br>months after diagnosis, then<br>every 2 yrs. |
| Blood pressure         | Annually after age 10 yrs.                                                                                   |

## Prevention and Early detection of complication

#### **RETINOPATHY:**

- Screening after 5 yr duration in prepubertal children
  - after 2 yr in pubertal children
- Frequency- 1-2 yearly
- Method preferred- fundal photography

#### NEPHROPATHY:

- Screening after 5 yr duration in prepubertal children
  - after 2 yr in pubertal children
- Frequency- annually
- Preferred method- spot urine sample for albumin:creatinine ratio

## Prevention and Early detection of complication

#### **NEUROPATHY:**

- Screening-unclear in children; adults at diagnosis in type 2 DM and 5yr after diagnosis in type 1 DM
- Frequency- unclear
- Method preferred-physical examination

#### MACROVASCULAR DISEASE:

- Screening- after age 2 yrs
- Frequency- every 5 yrs
- Method preferred- lipid profile test

## Prevention and Early detection of complication

#### THYROID DISEASE

- Screening- at diagnosis
- Frequency- every 2-3 yr or more frequently based on symptoms or the presence of antithyroid antibodies.
- Method preferred- TSH

#### CELIAC DISEASE:

- Screening- at diagnosis
- Frequency- every 2-3 yr
- Method preferred- tissue transglutaminase endomysial antibody.

## MANAGEMENT OF ACUTE COMPLICATIONS

### **Diabetic Ketoacidosis**

- DKA,a life threatning complication of diabetes mellitus,occurs more commonly in children with type 1 DM than type 2 DM.
- DKA in children is defined as hypgerglycemia(serum glucose conc. >200-300mg/dl) in the presence of metabolic acidosis (blood pH<7.3 with serum bicarbonate level<15 mEq/L) and ketonemia(presence of ketones in blood).

### **Diabetic Ketoacidosis**

## Signs and symptoms

- Nausea, vomiting, abdominal pain
- Fruity odour in breath
- Tachycardia
- Low volume pulses
- Hypotension
- Impaired skin turgor
- Delayed capillary refill time
- Dehydration
- Rapid, Deep sighing respiration Kussumaul respiration (met. Acidosis)

## Classification of diabetic ketoacidosis

|                      | NORMAL    | MILD                               | MODERATE                                                          | SEVERE                                                                                      |
|----------------------|-----------|------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Co2 mEq/L<br>venous) | 20-28     | 16-20                              | 10-15                                                             | <10                                                                                         |
| рН                   | 7.35-7.45 | 7.25-7.35                          | 7.15-7.25                                                         | <7.15                                                                                       |
| clinical             | No change | Oriented,<br>alert but<br>fatigued | Kussmaul<br>respirations;<br>oriented but<br>sleepy;<br>arousable | Kussmaul or<br>depressed<br>respirations;<br>sleepy to<br>depressed<br>sensorium to<br>coma |

## DIABETIC KETOACIDOSIS TREATMENT PROTOCOL.

| TIME                                                                 | THERAPY                                                                            | COMMENTS                                                                                                                                             |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 <sup>ST</sup> hr                                                   | 10-20 ml/kg IV bolus 0.9% NaCl<br>or LR<br>Insulin drip at 0.05 to 0.10<br>u/kg/hr | Quick volume expansion;may be repeated.NPO.Monitor I/O,neurological status.Usefloe sheet. Have Mannitol at bedside;1 g/kg IV push for cerebral edema |  |
| 2 <sup>nd</sup> hr until<br>DKA resolution                           | 0.45%NaCl:plus continue<br>Insulin drip<br>20 mEq/l Kphos and .5%                  | IV rate= 85 ml/kg+maintainence-<br>bolus/23hr                                                                                                        |  |
|                                                                      | glucose if blood sugar <250<br>mg/dl                                               | If K<3mEq/L,give 0.5 to 1 mEq/kg as oral K solution OR increase IV K to 80 mEq/L                                                                     |  |
| After Oral intake with subcutaneous insulin dehydration and acidosis |                                                                                    | No emesis;CO2> 16 mEq/L;normal electrolytes                                                                                                          |  |

### References

- Nelson textbook of paediatrics 20 Edition
- Harrison's Textbook of Internal Medicine
- Case based reviews of paediatric endocrinology
- National Diabetes Fact Sheet 2003, DEPARTMENT OF HEALTH AND HUMAN SERVICES Centres for Disease Control and Prevention
- World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report of WHO. Department of Non-communicable Disease Surveillance. Geneva 1999