

Методы зондирования окружающей среды

Аэрологические оптические шар-пилотные наблюдения

Профессор Кузнецов Анатолий Дмитриевич

Российский государственный гидрометеорологический университет

Одной из основных задач аэрологических измерений является получение информации о параметрах ветра и их распределении с высотой.

Для измерения скорости и направления ветра в атмосфере могут быть использованы различные методы, однако наиболее широко применяется метод, когда для получения информации о ветре в ее значительной нижней части (тропосфере и стратосфере) используются наблюдения за перемещением объектов (трассеров), которые одновременно перемещаются в горизонтальном и в вертикальном направлениях.

Перемещение в **горизонтальном** направлении осуществляется за счет движения воздушных потоков, а в **вертикальном** направлении — либо за счет силы Архимеда, либо за счет силы земного притяжения.

Трассерами могут являться:

- **шары-пилоты**, в качестве которых обычно используют оболочки, наполненные газами легче воздуха (зондирование снизу вверх),
 - специальные **мишени**, опускающиеся **на парашютах** (зондирование сверху вниз).

Определение скорости и направления ветра при этом основано на измерении изменений координат таких трассеров за определенный интервал времени.

По временным интервалам между измерениями координат могут быть рассчитаны средняя скорость ветра и его направление в слое атмосферы, толщина которого определяется вертикальной скоростью перемещения объекта и интервалами времени между смежными отчетами.

В зависимости от способа определения координат перемещающегося объекта в атмосфере можно выделить **три** разновидности данного метода:

- оптический,
- радиотехнический,
 - навигационный.

При осуществлении *оптического* метода наблюдения за перемещением объекта в атмосфере выполняются с помощью специальных угломерных приборов — аэрологических теодолитов.

Радиотехнический метод предполагает измерение координат объекта с помощью специальных радиотехнических устройств — радиотеодолитов или радиолокационных станций.

В навигационном методе положение объекта в атмосфере определяется с помощью спутниковых навигационных систем (ранее - сигналов специальных навигационных наземных станций).

Среди указанных методов наибольшей простотой обладают оптические шар-пилотные наблюдения, суть которых состоит в наблюдении с помощью аэрологического теодолита за перемещением в горизонтальной и вертикальной плоскостях оболочки, наполненной газом легче воздуха и свободно увлекаемой воздушным потоком.

Оптические однопунктные шар-пилотные измерения скорости и направления ветра в свободной атмосфере

Для организации оптических однопунктные шар-пилотных измерений скорости и направления ветра в свободной атмосфере необходимо:

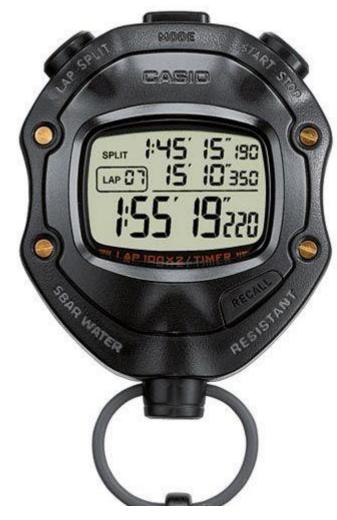
- 1. Латексная оболочка.
- 2. Комплект аппаратуры для наполнения оболочки: баллон с водородом, редуктор и шланг для подачи водорода в оболочку, грузики для определения свободной подъемной силы оболочки, весы для взвешивания оболочки перед наполнением ее водородом.
 - 3. Аэрологический теодолит, секундомер.
 - 4. Бланки для записи данных наблюдений.
 - 5. Два наблюдателя.
 - 5. Аппаратура и специализированные таблицы для обработки данных наблюдений.

Аэрологическая оболочка

Для однопунктных и базисных шар-пилотных наблюдений используются латексные оболочки № 10, 20 и 30 (цифры указывают диаметр оболочки в ненадутом состоянии в см)

Водородонаполнительное помещение

Процесс наполнения водородом латексной оболочки



Секундомер механический СОСпр-2а

Весы электронные

Секундомер электронный Casio HS-80TW-1E

Определение угловых координат шар-пилота с помощью аэрологического теодолита в полевых условиях

Офицерская школа морской авиации (Баку, 1915 г.)

Аэрологические теодолиты

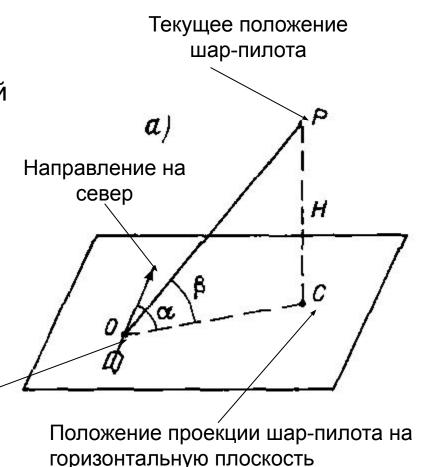
Объектив

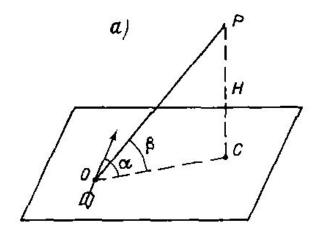
Винты для смещения объектива при слежении за шар-пилотом

Стопорный винт для фиксации горизонтальной шкалы после ее установки на ноль с использованием буссоли

Установка теодолита.

Теодолит устанавливается либо на треноге, либо на специальном стационарном постаменте, имеющем тот же винт крепления, что и тренога.


Место размещения аэрологического теодолита должно находиться вдали от высоких предметов и обеспечивать подход к теодолиту со всех сторон.


С помощью аэрологического теодолита в различные моменты времени t определяются две угловые координаты шар-пилота: горизонтальный угол α и вертикальный угол β , а сами моменты времени, прошедшие с момента выпуска, определяются секундомером.

Горизонтальный угол отсчитывается от направления на север до линии, соединяющей точку выпуска с проекций положения щар-пилота на горизонтальную плоскость по часовой стрелке.

Вертикальный угол отсчитывается от линии, соединяющей точку выпуска с проекций положения щар-пилота на горизонтальную плоскость, до линии, соединяющей точку выпуска с ткущим положением шар-пилота.

Точка выпуска шар-пилота

Дискретность *обрабатываемых* моментов времени:

- через 0.5 мин с момента выпуска до 3-ей минуты включительно;
- через 1 мин с 3-ей до 10-й мин;
- через 2 мин с 10-й мин до 40 мин,
- через 4 мин с 40 мин до конца подъёма, включая последнюю минуту наблюдения.

Для контроля данные о вертикальных углах <u>записываются</u> в таблицу наблюдений после третьей минуты каждую минуту.

Погрешности шар-пилотных наблюдений

Инструментальные погрешности

Ошибки, возникающие при установке и настройке теодолита:

- 1. Ошибка, вызванная смещением нуля вертикального круга.
- 2. Ошибка, вызванная наличием угла коллимации.
- 3. Ошибка, связанная с неправильным горизонтированием теодолита.
- 4. Ошибка, связанная с неправильной ориентацией теодолита относительно географических координат.

1. Ошибка, вызванная смещением нуля вертикального круга: Δα.

Для определения величины ошибки смещением нуля вертикального круга теодолит наводят на удаленный предмет и определяют вертикальный угол α₁. Затем переводят труду через зенит и снова наводят на тот же предмет и определяют второй вертикальный угол α₂. Поскольку

$$\alpha_1 = \alpha_{\text{uct}} + \Delta \alpha$$
, a $\alpha_2 = \alpha_{\text{uct}} + 180^{\circ} - \Delta \alpha$.

Подставляя из первого уравнения $\alpha_{_{\!{\mathsf{UCT}}}}$ во второе уравнение, получаем

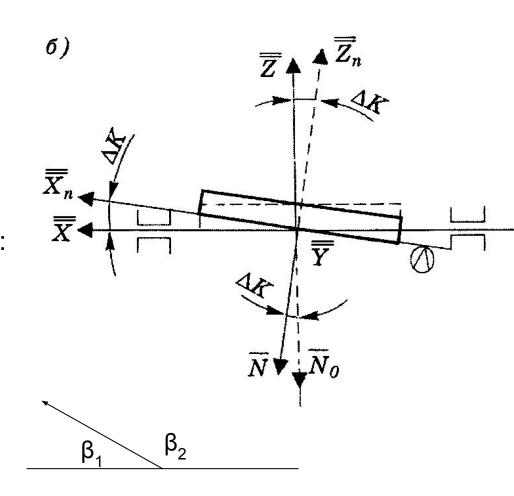
$$\alpha_2 = \alpha_1 - \Delta \alpha + 180^0 - \Delta \alpha = \alpha_1 + 180^0 - 2 \Delta \alpha$$

ИЛИ

$$\alpha_2 = \alpha_1 + 180^0 - 2 \Delta \alpha$$
.

Решая последнее уравнение относительно Δα, получаем

$$\Delta \alpha = (\alpha_1 - \alpha_2 - 180^0) / 2.$$

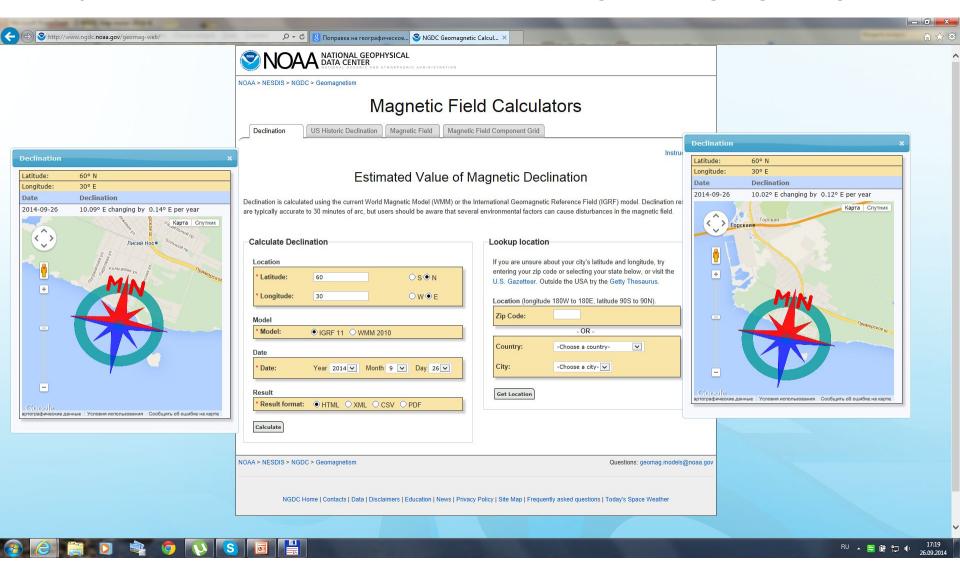

После проведения измерений для получения правильного значения вертикального угла к измеренным значениям необходимо вводить поправку Δα (с соответствующим знаком), если измеренная при юстировки теодолита величина Δα > 0.2⁰.

2. Ошибка, вызванная наличием угла коллимации: ΔК.

Коллимационная ошибка - инструментальная ошибка в оптических приборов, происходящая вследствие отклонения от перпендикулярности оси вращения трубы к её оптической оси.

Возникает при неправильной установке призмы внутри теодолита. Определяется путем измерения вертикально угла удаленного предмета при двух положениях вертикальной трубы: β_1 и β_2 . Если

 $\Delta K = [(\beta_2 + \beta_1 - 180^0) / 2] > 0.2^0,$ то теодолит бракуется.


3. Ошибка, связанная с неправильным горизонтированием теодолита.

Устраняется путем устойчивого закрепления треноги теодолита на грунте (если не используются специальные бетонные постаменты) и подстройки положения теодолита на треноге за счет вращения трех регулировочных винтов.

Регулировка продолжается до тех пор, пока при любом положении теодолита после его вращения вокруг вертикальной оси воздушный пузырек уровня остается точно по середине шкалы.

- 4. Ошибка, связанная с неправильной ориентацией теодолита относительно географических координат.
- Данный вид ошибки возникает при ориентации теодолита по буссоли без учета магнитного склонения пункта его размещения.
- **Магнитное склонение** угол между географическим и магнитным меридианами в точке земной поверхности. Магнитное склонение считается положительным, если северный конец магнитной стрелки компаса отклонен к востоку от географического меридиана, и отрицательным если к западу.
- При восточном магнитном склонении при юстировки теодолита к 0⁰ горизонтальной шкалы прибавляется величина магнитного склонения, при западном вычитается.
- Для СПб (30⁰ E и 60⁰ N) магнитное склонение равно +10.90 E и изменяется на 0.14⁰ в год к E.
- Для определения величины магнитного склонения для различных географических пунктов существуют соответствующие справочники, карты и «калькуляторы» в Интернете.

Калькулятор магнитного склонения: http://www.ngdc.noaa.gov/geomag-web/

Для СПб (30⁰ **E** и 60⁰ **N**) магнитное склонение равно +10.9⁰ **E** и изменяется на 0.14⁰ в год к **E**

При многократном проведении измерений из одного и того же места для точной ориентации теодолита можно использовать **первый способ**: меру — видимый из места установки предмет, азимут которого заранее известен. После наведения теодолита на меру устанавливают известное значение азимута и закрепляют горизонтальную шкалу стопорным винтом.

Второй способ ориентации без использования буссоли – ориентация по полярной звезде, азимут которой равен 0⁰.

Третий способ – ориентация по Солнцу: в истинный полдень тень от теодолита проходит точно по меридиану. Правда, для этого необходимо знать не московское, а истинное солнечное время.

Определение **вертикальной скорости** шар-пилота

Поскольку мы живем в трехмерном мире, то для определения положения любой точки в пространстве необходимы три координаты.

Оптический метод пеленгации с помощью аэрологического теодолита позволяет измерить **только** две координаты (α и β) из трех, необходимых для:

- 1) задания положений шар-пилота в пространстве в разные моменты времени;
- 2) определения координат проекций шар-пилота на горизонтальной плоскости;
- 3) определения длины отрезков прямых, соединяющих эти проекций;
- 4) определения ориентации отрезков прямых, соединяющих эти проекций, относительно направления на север.

Недостающая **третья координата** — высота H, *рассчитывается* по вертикальной скорости подъемы шар-пилота w, которая определяется до его запуска.

При этом **предполагается**, что вертикальная скорость подъемы шар-пилота остается постоянной за все время наблюдения, что не в полной мере соответствует действительности и вносит **методическую погрешность** в определение скорости и направления ветра.

Следовательно, существенным фактором, определяющим возможность реализации оптического **однопунктного** шар-пилотного метода ветровых измерений в атмосфере, является возможность предварительного (до запуска шар-пилота в атмосферу) определения его вертикальной скорости движения.

Для решения этой задачи рассмотрим особенности движения шара в вертикальной плоскости.

Эластичная оболочка шара-пилота после наполнения ее газом приобретает сферическую форму. При этом давление газа внутри оболочки лишь незначительно превышает давление окружающего воздуха.

На основании закона Архимеда наполненная газом легче воздуха оболочка будет под воздействие выталкивающей силы двигаться

вверх.

В предположении, что оболочка невесома, такая выталкивающая сила, называемая **полной подъемной силой** E, будет равна $E = V(\rho_{\scriptscriptstyle \mathrm{R}} - \rho_{\scriptscriptstyle \Gamma})$

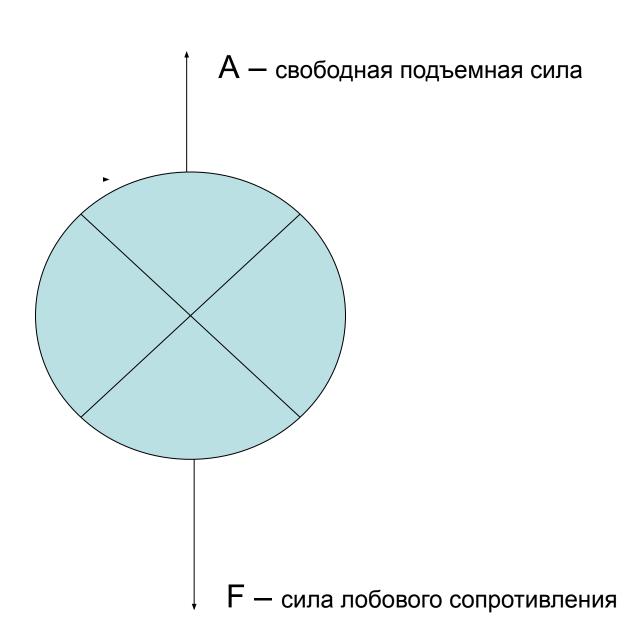
где V — объем оболочки шара-пилота; g — ускорение силы тяжести; $\rho_{\rm B}$ и $\rho_{\rm \Gamma}$ — плотности воздуха и газа соответственно. При 0^{0} С и давлении 1023 гПа $\rho_{\rm B}$ - $\rho_{\rm \Gamma}$ ≈ 1.2 кг/м 3 (для технического водорода).

При радиусе наполненной водородом оболочки в 30 см ее полная подъемная сила будет составлять около 135 г.

Так как оболочка имеет вес B, то **свободная подъемная сила** A, действующая на неё вверх, будет равна:

$$A = E - B = V (\rho_B - \rho_\Gamma) - B.$$

Свободная подъемная сила оболочки определяется во время ее наполнения водородом по величине поднимаемого грузика и, следовательно, известна.


Второй силой, которая будет действовать на оболочку и которая будет направлена вниз, является сила лобового сопротивления *F*, величина которой определяется следующим соотношением:

$$F = k q S$$
,

где k — коэффициент лобового сопротивления, зависящий от формы оболочки и режима обтекания шара воздушным потоком, q — динамическое давление, испытываемое шаром со стороны обтекающего потока, S — площадь поперечного сечения шара.

В процессе полета шар-пилота A ≈ F

$$A = V(\rho_{B} - \rho_{\Gamma}) - B$$
$$F = k q S$$

В случае, если оболочка имеет сферическую форму,

$$S = \pi D^2 / 4$$
 u $q = \rho_B w^2 / 2$,

где D — диаметр шара, w — вертикальная скорость движения шар-пилота.

Теперь выражение для F можно записать в виде: $F = k \ q \ S$,

$$F = \frac{k\pi}{8} \rho_B D^2 w^2.$$

Эксперименты показали, что практически сразу же после выпуска шар поднимается равномерно, т.е. происходит установившееся движение, при котором обе силы уравновешиваются и, следовательно, A = F. Подставляя в последнем уравнении F вместо A, получаем:

$$A = \frac{k\pi}{8} \rho_B D^2 w^2.$$

Разрешая последнее выражение относительно *w*, получаем

$$w = \sqrt{\frac{8}{k\pi}} \sqrt{\frac{A}{\rho_B}} \frac{1}{D}.$$

Для расчета **w** по этой формуле необходимо знать коэффициент лобового сопротивления оболочки k, плотность воздуха ρ , свободную подъемную силу оболочки A и ее диаметр D.

Более удобной для расчета вертикальной скорости шара-пилота *W*(м/мин) является следующая формула

$$W = C \frac{\sqrt{A}}{\sqrt[3]{A + B}} * \sqrt{\frac{p_0(t + 273)}{293p}}$$

где C - коэффициент, зависящий от грузоподъемности (свободной подъемной силы) оболочки A; B - вес оболочки; ρ_O - давление на уровне моря по стандартной атмосфере; ρ и t – атмосферное давление и температура воздуха у поверхности Земли в момент выпуска шарапилота.

Напомним, что:

- свободная подъемная сила шара-пилота *А* измеряется в процессе наполнения оболочки газом с помощью подвешенного к ней грузика,
- вес оболочки $\mathbf{\textit{B}}$ определяется путем взвешивания оболочки до ее наполнения водородом.

На практике при проведении однопунктных шар-пилотных наблюдений для расчета вертикальной скорости подъема **w** используются специальные таблицы, приведенные в «Практикуме по аэрологи». Определение величины w производится в два этапа:

- 1. Сначала по таблицам приложения 2 «Практикуме по аэрологи» определяется не исправленная на текущую плотность воздуха величина w₀.
- 2. Затем по таблице в приложении 1 «Практикуме по аэрологи» определяют поправочный множитель, учитывающий отличие текущих условий от стандартных. После перемножения w₀ на поправочный множитель получают искомую вертикальную скорость подъема шар-пилота w.

Таблица вертикальных скоростей шаропилотов по данным свободной подъемной силы A и веса оболочки q для оболочки № 10

	Вес оболочки, г												
A	10	12	14	16	18	20	92	24	26	28	30		
10	95	92	90	88	86	83	82	80	79	77	7		
12	101	99	9.7	94	92	90	88	86	85	83	8		
14	106	104	102	99	97	95	93	92	90	88	8		
16	111	108	106	104	101	99	98	96	94	93	(
18 .	114	112	110	108	105	103	102	100	99	97	1		
20	118	116	114	111	109	107	106	104	102	101			
22	121	119	117	115	112	110	109	107	106	104	1		
24	124	122	120	118	116	114	112	111	109	108	10		
26	126	124	123	121	119	117	115	114	112	111	10		
28	129	127	125	123	122	119	118	116	115	113	1		
30	131	130	128	126	124	122	120	119	118	116	1		
32	134	132	130	128	126	124	123	121	120	118	1		
34	136	134	132	130	128	126	125	124	122	121	1		
36	138	136	134	132	131	129	127	126	124	123	1:		
38	139	138	136	134	132	130	129	128	127	125	1:		
40	141	139	138	136	134	132	131	130	129	127	1		

Таблица вертикальных скоростей шаропилотов по данным свободной подъемной силы A и весу оболочки q для оболочки 20

	5 2 3		Вес обол	очки, г		
A	30	32	34	36	38	40
102	162	162	161	160	159	159
104	163	162	162	161	160	159
106	164	163	162	162	161	160
108	165	164	163	162	161	161
110	165	165	164	163	162	162
112	166	165	164	164	163	163
114	167	166	165	164	164	163
116	167	166	166	165	164	164
118	168	167	166	166	165	164
120	168	168	167	166	166	165
122	169	168	168	167	166	166
124	170	169	168	168	167	166
126	170	170	169	168	168	167
128	171	170	170	169	168	168
130	172	171	170	170	169	168
132	172	172	171	171	170	169
134	173	172	172	171	171	170
136	174	173	172	172	171	17
138	174	174	173	173	172	171
140	175	174	174	173	173	179
142	176	175	175	174	173	173
144	177	176	176	175	174	174
146	178	177	176	176	175	174
148	178	178	177	176	176	178
150	179	178	178	177	177	176
152	180	179	179	178	178	177
154	181	180	180	179	178	178
156	182	181	180	180	179	179
158	183	182	182	181	180	180
160	184	183	183	182	181	18

A			Вес обол	очки, г		
A	30	32	34	36	38	40
				13		
162	185	- 184	184	183	182	182
164	186	185	185	184	183	183
166	187	186	186	185	184	184
168	188	188	187	186	186	185
170	189	189	188	188	187	186
172	191	190	190	189	188	188
174	192	192	191	190	190	189
176	194	193	192	192	191	191
178	195	194	194	193	193	192
180	196	196	195	194	194	193
182	198	197	197	196	196	195
184	200	199	198	198	197	196
186	201	201	200	200	199	198
188	203	202	202	201	201	200
190	205	204	204	203	202	202
192	206	206	205	204	204	203
194	208	207	207	206	205	205
196	210	209	208	208	207	207
198	211	211	210	210	209	208
200	213	212	212	211	211	210
202	215	214	214	213	213	212
204	217	216	216	215	214	214
206	218	218	217	217	216	216
208	220	219	219	218	218	217
210	221	220	220	220	219	218
212	222	222	221	220	220	219
214	223	223	222	221	221	220
216	224	223	223	222	222	22
218	225	224	224	223	222	22
220	225	224	224	223	223	22:
222	226	225	224	224	2 2 3	223
224	226	226	225	225	224	224
226	227	226	226	225	225	22
228	228	227	227	226	226	22
230	228	227	227	226	226	22

Таблица вертикальных скоростей шаропилотов по данным свободной подъемной силы A и весу оболочки q для оболочки № 30

		Bec o	болочк	и, г		A	Вес оболочки, г					
A	70	75	80	85	90	A	70	75	80	85	90	
102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 150 152 154 156 160 162 164 170 172 174 176 178 180 180 180 180 180 180 180 180 180 18	149 150 150 151 152 153 154 155 156 156 157 158 159 160 161 162 163 163 164 165 166 167 168 169 170 171 172 173 174 176 177 178 180 181 182 184 185 187 189 190 192 194 197	148 148 149 150 151 152 152 153 154 155 156 157 158 158 159 160 161 162 163 164 164 165 166 167 168 169 170 171 172 173 174 177 178 180 181 182 182 184 186 187 189 191 192	146 147 148 149 150 151 152 153 154 155 156 157 158 158 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 175 176 177 179 180 181 183 184 186 188 190 191 191	145 146 146 148 148 149 150 151 152 153 154 155 156 156 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175 176 177 179 180 182 183 185 187 188 190 194	143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175 176 178 179 181 182 184 185 186 187 188 199 190 191 192	196 198 200 202 204 206 208 210 212 214 216 218 220 224 228 232 236 240 244 248 252 256 264 268 272 276 288 292 276 288 292 216 218 218 219 219 219 219 219 219 219 219 219 219	199 200 202 204 205 206 207 209 210 211 212 213 214 216 217 218 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 239 240 241 241 241	198 199 201 202 204 205 206 208 209 210 211 212 213 214 216 217 218 220 221 221 222 223 224 224 225 226 227 227 228 229 230 230 230 231 232 232 233 234 235 236 237 238 238 239 230 231 231 232 232 233 234 235 236 237 238 238 239 230 230 230 230 230 230 230 230 230 230	196 198 200 201 203 204 205 206 207 208 210 211 213 215 216 217 218 219 220 221 222 223 223 224 225 225 225 225 226 227 228 229 229 231 231 231 232 231 232 231 231 232 232	195 197 198 200 201 203 204 205 206 207 208 209 210 212 213 215 216 217 218 219 220 221 221 222 223 224 224 225 226 227 228 229 230 230 231 231 232 233 234 235 236 237 238 238	1944 1966 1977 1999 2000 2010 2030 2000 2000 2100 2112 2113 2114 2114 222 222 222 222 222 222 222 2	

Поправочный множитель $\sqrt{\frac{\rho_0}{\rho}}$ для расчета свободной подъемной силы шаропилота при наполнении его до стандартной вертикальной скорости по весу оболочки (по таблицам приложения 1) и для исправления нестандартной вертикальной скорости, полученной по свободной подъемной силе шара и весу оболочки (по таблицам приложения 2)

Темпера-		Давление, гПа										
тура, °С	1067	1040	1013	987	960	933	907	880	853	827	800	
$ \begin{array}{r} -50 \\ -40 \\ -30 \\ -20 \\ -10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array} $	0,95 0,95 0,96 0,96 0,97 0,98 0,99 0,99 1,00 1,00	0,95 0,96 0,97 0,97 0,98 0,98 0,99 1,00 1,00 1,01 1,01	0,96 0,96 0,97 0,98 0,99 0,99 1,00 1,01 1,01 1,01	0,96 0,97 0,97 0,98 0,99 0,99 1,00 1,00 1,01 1,02 1,02	0,96 0,97 0,98 0,98 0,99 1,00 1,00 1,01 1,02 1,02 1,02	0,97 0,98 0,98 0,99 1,00 1,01 1,01 1,02 1,02 1,03	0,97 0,98 0,99 0,99 1,00 1,01 1,01 1,02 1,02 1,03 1,04	0,99 0,99 0,99 1,00 1,00 1,01 1,02 1,02 1,03 1,03 1,04	0,99 0,99 1,00 1,01 1,02 1,02 1,03 1,03 1,04 1,05	0,99 1,00 1,01 1,02 1,02 1,03 1,03 1,04 1,05 1,05	0,99 1,00 1,00 1,02 1,02 1,03 1,03 1,04 1,05 1,05 1,06	

Погрешности шар-пилотных наблюдений

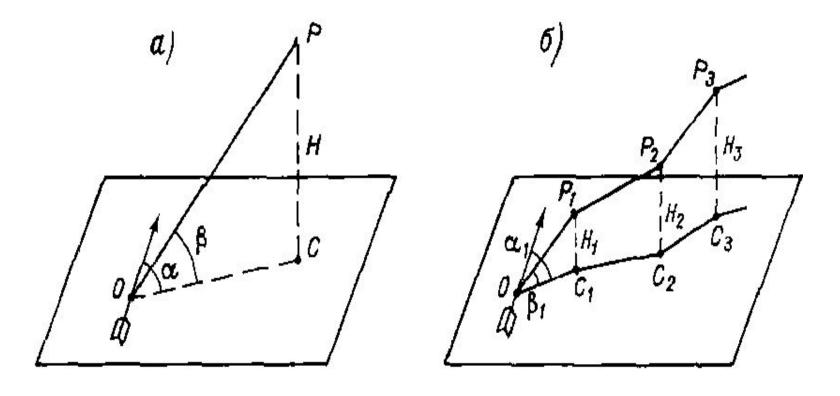
Методические погрешности

Отклонение фактической вертикальной скорости от расчетной:

I. Из-за уменьшения плотности воздуха с высотой, что приводит к возрастанию вертикальной скорости в соответствие с соотношением

$$\frac{w_H}{w_0} = \frac{\sqrt[6]{\rho_{603\partial_H}}}{\sqrt[6]{\rho_{603\partial_0}}}$$

<i>Н</i> , км	0	4	8	10
w_H / w_0	1	1.08	1.15	1.20

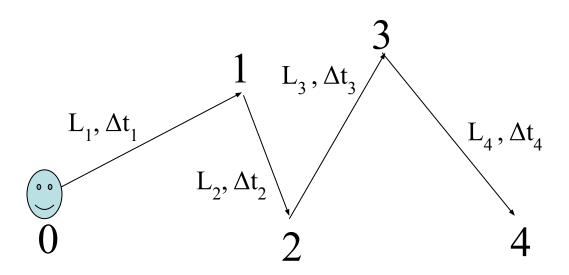

- 2. Из-за диффузии газа через оболочку (можно пренебречь).
- 3. Из-за увеличения с высотой разности давления между наружным воздухом и газом в оболочке (появление сверхдавления внутри шара) на высотах более 10 км, что приводит к увеличению вертикальной скорости подъема.
- 4. Из-за наличия разности температур между наружным воздухом и газом в оболочке: если $t_{\it eosd} > t_{\it easa}$, то это приводит к уменьшению свободной подъемной силы оболочки, и наоборот (проявляется при прохождении шарпилотом мощных инверсионных слоев).
- 5. Из-за отклонения формы шара от сферической (изменяется коэффициент лобового сопротивления).
- 6. Из-за наличия в атмосфере турбулентности и вертикальных потоков.

Методика определения вертикального профиля скорости и направления ветра

Основные предположения:

- 1. Шар-пилот полностью увлекается воздушным горизонтальным потоком.
- 2. Вертикальная скорость подъема шар-пилота может быть определена на основе измерения веса оболочки и ее свободной подъемной силы.
 - 3. Вертикальная скорость подъема шар-пилота не меняется с высотой.

Схема однопунктных шар-пилотных наблюдений


 P_1, P_2, P_3 — положение шар-пилота в моменты времени $t_1, t_2, t_3;$ C_1, C_2, C_3 — положение проекций шар-пилота на горизонтальную плоскость;

Н₁, Н₂,Н₃ – высота подъёма шар-пилота;

угол α - азимут (горизонтальный), угол β - вертикальный

Основные теоретические положения

Принцип измерения будет понятен, если мы представим себе биллиардный шар, который катится по горизонтальной поверхности стола, сталкиваясь с другими шарами. Требуется определить скорость его перемещения между столкновениями, зная L_i и Δt_i : $V_i = L_i / \Delta t_i$.

Направление ветра отсчитывается:

- от направления на север;
- по часовой стрелки;
- до вектора, который указывает *откуда* дует ветер.

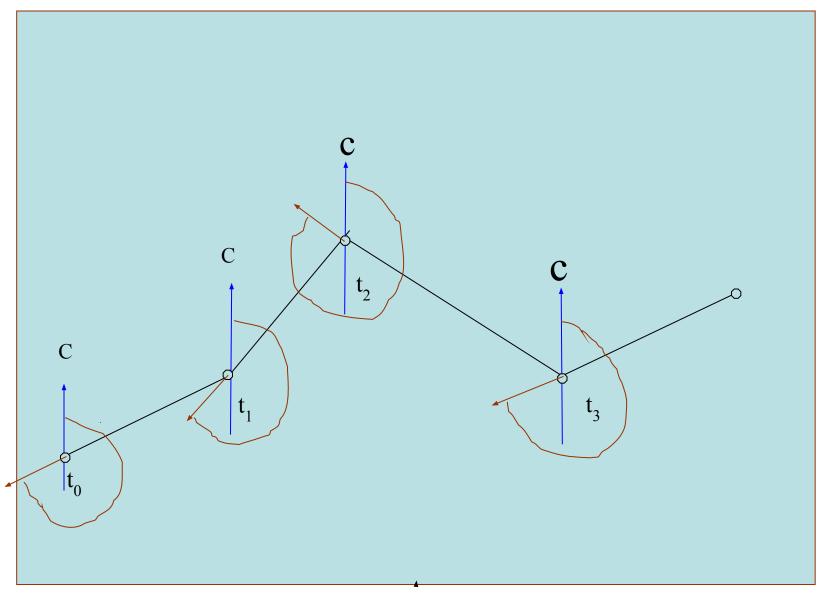


Схема определения направления ветра при проведении шар-пилотных наблюдений.

Подготовка к обработке данных шар-пилотных наблюдений:

1. Расчет вертикальной скорости подъема шар-пилота w.

2. Расчет высоты подъема шар-пилота Н.

Расчет высоты шар-пилота

Высоту H можно определить, если известны вертикальная скорость шар-пилота w и время Δt , прошедшее с момента выпуска шар-пилота:

$$H = w \cdot \Delta t$$
.

Вертикальная скорость шар-пилота определяется перед выпуском шар-пилота, а время — по секундомеру.

Практически определение вертикальной скорости шарпилота значительно упрощается с помощью специальных таблиц, учитывающие еще и поправки на изменение плотности воздуха с изменением температуры.

Дискретность обработки данных шар-пилотных наблюдений

Дискретность обрабатываемых моментов времени:

- через 0.5 мин до 3-ей минуты включительно;
- через 1 мин с 3-ей до 10-й мин;
- через 2 мин с 10-й мин до 40 мин,
 - через 4 мин с 40 мин до конца подъёма, включая последнюю минуту наблюдения.

Особенность использования метода оптических шар-пилотных наблюдений заключается в том, что с его помощью могут быть рассчитаны лишь осредненная в слоях атмосферы скорость и направление ветра.

Толщина каждого такого слоя определяется вертикальной скоростью перемещения объекта и интервалами времени между смежными отчетами.

В дальнейшем эти значения рассматриваются как скорость и направления ветра на высотах, соответствующие высоте середины соответствующих слоев.

$$\overline{H}_{1} = \frac{H_{1}}{2} = \frac{P_{1}C_{1}}{2} = \frac{w \Delta t_{1}}{2}$$

$$\overline{H}_{2} = \frac{H_{2} - H_{1}}{2} = \frac{P_{2}C_{2} - P_{1}C_{1}}{2} = \frac{w \Delta t_{2}}{2}$$

$$\overline{H}_{2} \neq \frac{H_{2}}{2}!$$

Существуют графический и аналитический методы обработки данных шаропилотных наблюдений.

Первоначально наибольшее развитие в оперативной практике получил графический метод, который обладает достаточной простотой и наглядностью. Однако графический метод не обеспечивает достаточной точности обработки исходных данных, поскольку при реализации графического метода часто возникают ошибки как субъективного, так и методического характера.

От указанных недостатков графического метода свободен аналитический метод обработки данных шаропилотных наблюдений.

Учитывая преимущества и недостатки этих двух методов рассмотрим последовательно их реализацию.

Графический метод

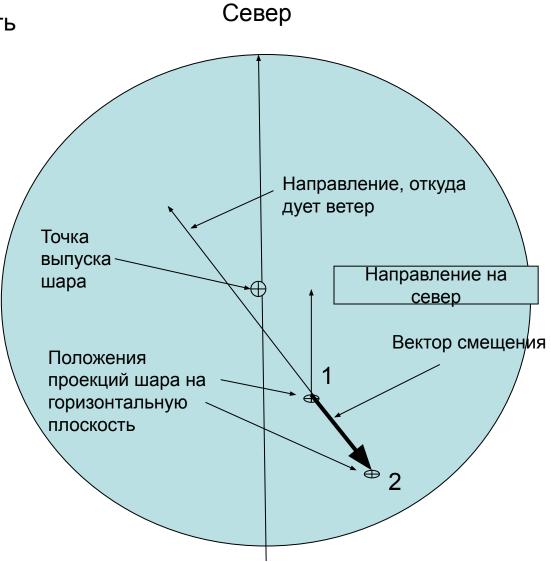
Графический метод обработки данных однопунктных шар-пилотных наблюдений состоит из двух этапов.

Этап 1. Построение положений проекций шар-пилота на горизонтальной поверхность в разные моменты времени.

Этап 2. Последовательное использование положений двух соседних пар проекций для определения скорости и направления ветра.

Этап 1.

Если в некоторый момент времени известны: высота шар-пилота H, вертикальный угол β и горизонтальный угол α , то для построения положения проекции шара на горизонтальную плоскость сначала находим его удаление от места выпуска L:


 $L = H ctg \beta$.

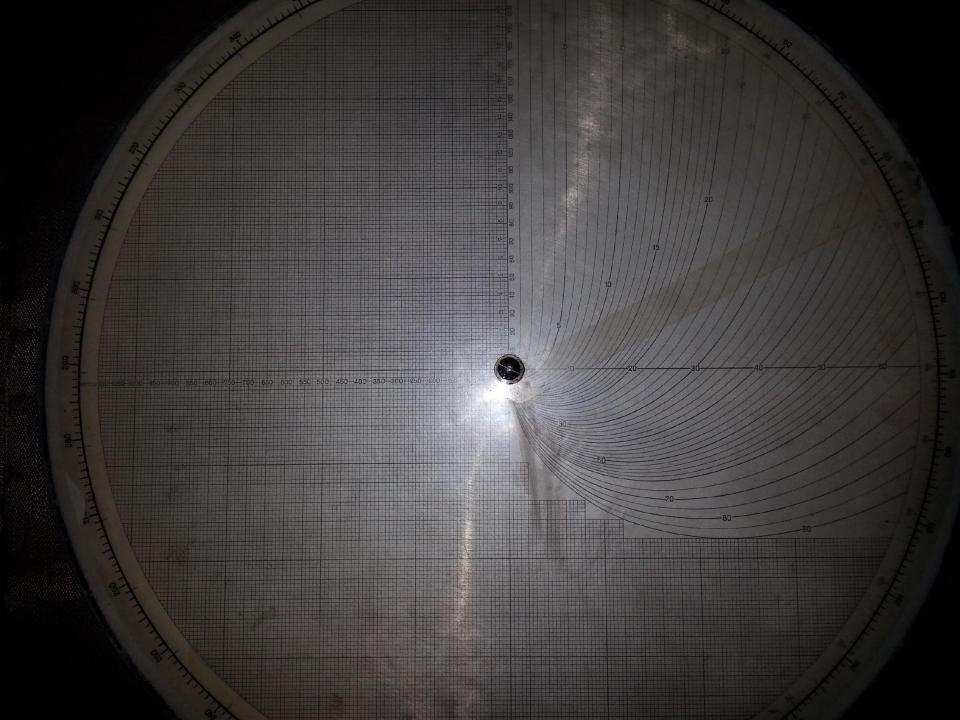
Получаем окружность с радиусом \boldsymbol{L} , в некоторой точке которой и будет находиться искомая проекция. Для нахождения положения этой точки на построенной окружности отложим от направления на север по часовой стрелке горизонтальный угол α и под этим углом проведем линию от центра до пересечения с окружностью радиуса \boldsymbol{L} . Точка пересечения и будет положение искомой проекции.

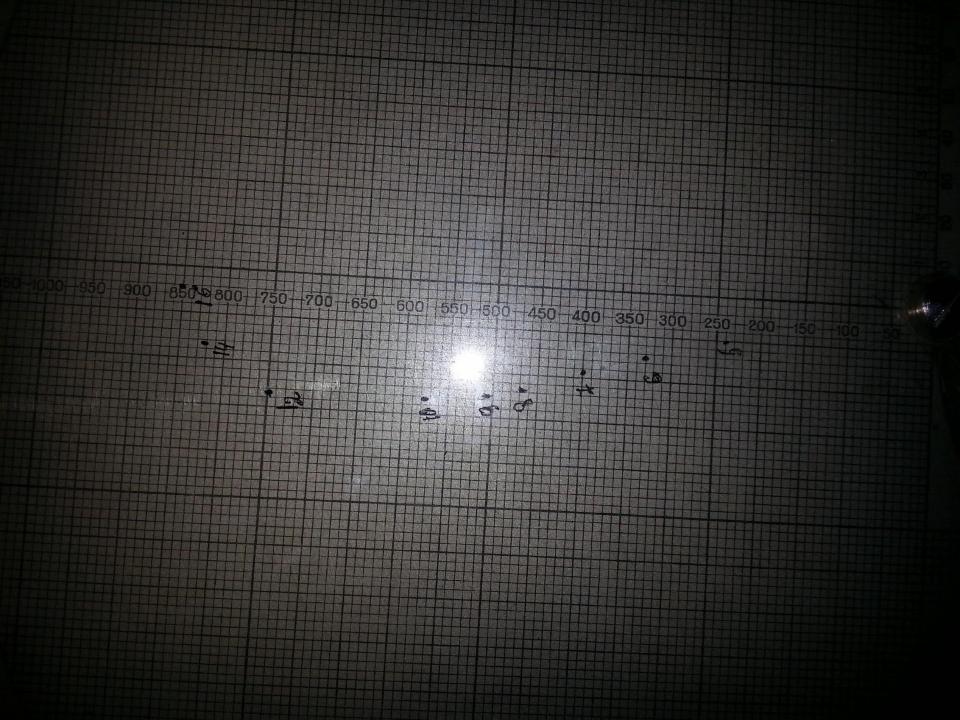
После построения положения двух последовательных проекции шара на горизонтальную плоскость (на рисунке – точки 1 и 2) (на рисунке – точки 1 и 2) определяются скорость и направление ветра.

Этап 2а.

После построения положения двух последовательных проекции шара на горизонтальную плоскость определяются скорость и направление ветра.

Этап 2б.


Для графического определения скорости и направления ветра на высотах по результатам шаропилотных наблюдений используется круг Молчанова (синоним: аэрологический планшет A-30).


Этот прибор состоит из:

- металлического неподвижного диска, на одной из сторон которого отпечатана номограмма,
 - прозрачного целлулоидного круга, который вращается около центра неподвижного круга,
- подвижной линейки, вращающейся вокруг центра круга.

На прозрачном круге с помощью номограммы строится **горизонтальная проекция шара-пилота**, по которой определяются скорость и направление ветра.

Внешний вид круга Молчанова (аэрологический планшет А-30).

Аналитический метод

Более точными, естественно, являются аналитические методы обработки, использование которых в оперативной практике возможно лишь при использовании компьютерной техники. Применение компьютерной техники в то же время позволяет архивировать исходные данные и результаты расчетов, упростить процесс представления информации и передачи ее потребителям, повысить культуру труда.

Алгоритм обработки данных однопунктных шарпилотных наблюдений

$$\begin{split} H_i = & W \, t_i \\ x_i = & H_i \, ctg \, \beta_i \cos \alpha_i \\ y_i = & H_i \, ctg \, \beta_i \sin \alpha_i \\ V_{i,i-1} \left(\textit{M/c} \right) = & \frac{\sqrt{\Delta x_{i,i-1}^{-2} + \Delta y_{i,i-1}^{-2}}}{60 \, \Delta t_{i,i-1}} \quad \Delta x_{i,i-1} = x_i - x_{i-1} \quad \Delta y_{i,i-1} = y_i - y_{i-1} \quad \Delta t_{i,i-1} = t_i - t_{i-1} \\ a_{i,i-1} = & \arctan \left\{ \frac{\Delta y_{i,i-1}}{\Delta x_{i,i-1}} \right| \\ & 180^0 + a_{i,i-1} \quad \textit{echu} \quad \Delta x_{i,i-1} > 0, \, \Delta y_{i,i-1} > 0 \end{split}$$

$$d_{i} = \frac{a_{i,i-1} \quad ecnu \quad \Delta x_{i,i-1} < 0, \quad \Delta y_{i,i-1} < 0}{360^{0} - a_{i,i-1} \quad ecnu \quad \Delta x_{i,i-1} < 0, \quad \Delta y_{i,i-1} > 0}{180^{0} - a_{i,i-1} \quad ecnu \quad \Delta x_{i,i-1} > 0, \quad \Delta y_{i,i-1} < 0}$$

Пример заполнения таблицы при аналитическом расчете скорости и направления ветра

Т, мин	α, 0	β, ⁰	Н, м	X	У	V, м/с	Δχ	Δy	а	d , ⁰
0.5	159.5	47.7	100	-85.3	31.9	3.0	-85.3	31.9	20.5	340
1.0	155.5	47.2	200	-168.5	75.9	3.1	-83.2	44.0	27.9	332
1.5	158.0	47.2	300	-258.4	102.8	3.1	-89.9	26.9	16.7	343
2.0	157.0	49.0	400	-310.1	135.6	2.3	-61.7	32.8	28.0	332
2.5	157.0	47.7	500	-419.1	177.5	3.6	-99.0	41.9	22.9	337
3.0	164.5	45.5	600	-568.7	159.3	5.0	-149.6	-18.2	6.9	7
4.0	164.3	43.8	800	-803.5	225.3	4.1	-234.8	66.0	15.7	353
5.0	169.0	43.9	1000	-1020.3	197.4	3.6	-216.8	-27.9	7.3	7
6.0	172.0	45.8	1200	-1155.9	163.3	2.3	-135.6	-34.1	14.1	14

Пример обработки данных однопунктных шарпилотных

наблюдений

$$H_i = W t_i$$
 W=200 м/мин; H_1 =200 0.5 =100м; H_2 =200 1.0 =200м;

$$x_i = H_i \operatorname{ctg} \beta_i \cos \alpha_i$$

$$X_1 = 100 \ ctg \ (47.7) \ cos \ (159.5) = 100 \ 0.91 \ (-0.937) = -85.3$$

$$X_2 = 200 \ ctg \ (47.2) \ cos \ (155.5) = 200 \ 0.926 \ (-0.91) = -168.5$$

$$y_i = H_i \operatorname{ctg} \beta_i \sin \alpha_i$$

$$Y_1 = 100 \ ctg (47.7) \ sin (159.5) = 100 \ 0.91 \ 0.35 = 31.9$$

$$y_2 = 200 \text{ ctg } (47.2) \sin (155.5) = 200 \ 0.926 \ 0.41 = 75.9$$

$$V_{i,i-1}(M/c) = \frac{\sqrt{\Delta x_{i,i-1}^2 + \Delta y_{i,i-1}^2}}{60 \Delta t_{i,i-1}}$$

$$V_{1.0} = [(-85.3 - 0)^2 + (31.9 - 0)^2] / [60 (0.5 - 0)] = 3.0$$

$$V_{2.1} = [(-168.5 + 85.3)^2 + (75.9 - 31.9)^2] / [60 (1 - 0.5)] = 3.1$$

$$a_{i,i-1} = arctg \left| \frac{\Delta y_{i,i-1}}{\Delta x_{i,i-1}} \right|$$

$$A_{1,0} = arc \ tg \ I \ [(31.9 - 0) / (-85.3 - 0)] = 20.5;$$
 $\Delta x < 0;$ $\Delta y > 0$

$$A_{2,1} = arc \ tg \ I \ [(75.9 - 31.9) / (-168.5 + 85.3)] = 27.9;$$
 $\Delta x < 0;$ $\Delta y > 0$

$$d_{i} = \begin{cases} 180^{0} + a_{i,i-1} & ecnu \ \Delta x_{i,i-1} > 0, \ \Delta y_{i,i-1} > 0 \\ a_{i} = \frac{a_{i,i-1} & ecnu \ \Delta x_{i,i-1} < 0, \ \Delta y_{i,i-1} < 0}{360^{0} - a_{i,i-1} & ecnu \ \Delta x_{i,i-1} < 0, \ \Delta y_{i,i-1} > 0} \\ 180^{0} - a_{i,i-1} & ecnu \ \Delta x_{i,i-1} > 0, \ \Delta y_{i,i-1} < 0 \end{cases}$$

$$D_{1.0} = 360 - 20.5 = 239.5$$

$$D_{21} = 360 - 27.9 = 232.1$$

Представление данных однопунктных шар-пилотных наблюдений

Полученные значения скорости и направления ветра, отнесенные к высотам середины слоев над уровнем моря, наносят на график, который строится в масштабе: по вертикали - 1 см ~ 1 км; по горизонтали - 1 см ~ 2м/с, 1 см ~ 10⁰.

Первой точкой на графиках наносится данные о скорости и направлении ветра на уровне станции.

В слое до 3-х км строят дополнительный график зависимости направления ветра от высоты в масштабе по вертикали 1 см - 200 м, по горизонтали 1 см – 10°.

Все нанесенные точки соединяют прямыми линиями (кусочно-линейная интерполяция).

Полученные значения скорости и направления ветра записывают в соответствующие графы бланка КАЭ-3 в строку, соответствующую концу обрабатываемого интервала времени, т. е. моменту времени t_{r} .

Осуществляют привязку полученных ветровых характеристик к высоте. При этом найденные значения скорости и направления ветра относят к высоте середины слоя, пройденному радиозондом за соответствующий интервал времени.

Высота середины слоя определяется по построенному графику H(t) для момента времени, равному среднему значению из двух соседних обрабатываемых моментов времени.

Найденные значения высот записывают в графу "Высота середины слоя над уровнем моря" бланка КАЭ-3, графу "Высота середины слоя над поверхностью земли" заполняется до высоты 1000 м, вычитая из высоты середины слоя над уровнем моря высоту станции.

Расчет скорости и направления ветра для стандартных уровней производится по стандартным формулам линейной интерполяции.

С построенных графиков снимают значения скорости и направления ветра на стандартных высотах, изобарических поверхностях, высотах особых точек, уровнях наибольшей скорости ветра и максимальной скорости ветра.

В основу критерия для выбора особых точек ветра положена возможность восстановления по этим точкам кривой изменения с высотой направленияветра с точностью до 10^{0} , скорости ветра до 5 м/с.

Особыми точками ветра являются начальная и конечная высота подъема, уровень максимальной скорости ветра, границы пропуска в наблюдениях. Уровнем максимального ветра считается слой атмосферы выше изобарической поверхности 500 гПа (5500 м) где наблюдается скорость ветра превышающая 30 м/с и изменение скорости в двух километровом слое выше или ниже больше 10 м/с.

Дополнительно на построенных кривых изменения ветра с высотой намечают предполагаемые особые точки, где наблюдается значительный излом кривых.

Затем последовательно, в порядке возрастания высоты, исследуют каждую предполагаемую особую точку. Для этого соединяют прямой две соседние с исследуемой точки: нижележащую, уже выбранную особую точку, и вышележащую предполагаемую особую точку. На этой прямой на уровне исследуемой точки определяют линейно интерполированное

значение скорости или направления ветра.

Исследуемую точку включают в число особых, если:

линейно интерполированное значение скорости ветра отличается от действительного более чем на 5 м/с;

линейно интерполированное значение направления ветра отличается от действительного более чем на 10⁰.

Найденные значения скорости и направления ветра на стандартных высотах, стандартных изобарических поверхностях, высотах особых точек записывают в соответствующие графы бланка КАЭ-3а с точностью до целых.

Оптические <u>базисные</u> шар-пилотные измерения скорости и направления ветра в свободной атмосфере

Главное отличие базисных от однопунктных наблюдений состоит в том, что при проведении базисных высоты подъем шар-пилота рассчитывается на основе теодолитных измерений, а не по вертикальной скорости его подъема.

Это достигается тригонометрическим расчетом высоты шар-пилота на основе проведения одновременных наблюдений с помощью двух оптических теодолитов, расположенных на известном расстоянии друг от друга.

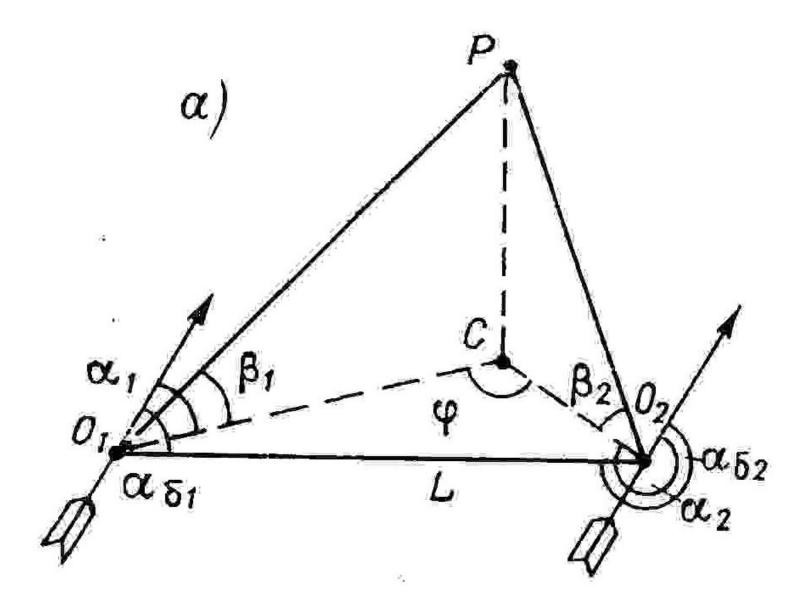
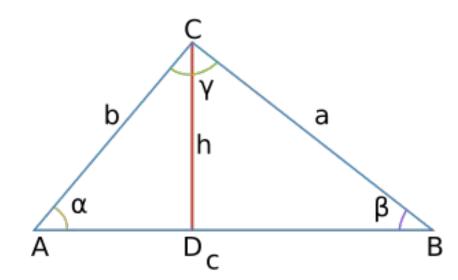


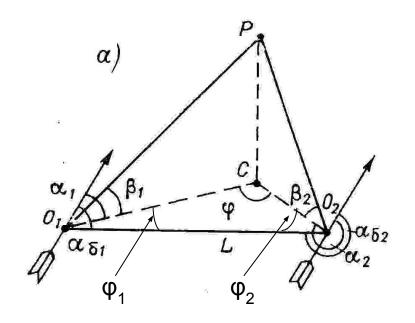
Схема двухпунктных (базисных) шаропилотных измерений при расположении теодолитов на одинаковой высоте

В данном методе расстояние между теодолитами (длина базы L) и углы ($\alpha_{\rm E1}$ и $\alpha_{\rm E2}$) для данной базы являются величинами постоянными и измеряются заранее.

Для каждого момента времени t с помощью аэрологических теодолитов из точек O_1 и O_2 производится измерение вертикальных углов: β_1 и β_2 , и горизонтальных углов: α_1 и α_2 .

Наличие двух горизонтальных углов: α_1 и α_2 , и углов $\alpha_{\rm E1}$ и $\alpha_{\rm E2}$ позволяет полностью решить треугольник ${\rm O_1CO_2}$, так как известна одна из его сторон (сторона L) и все три угла:


$$\varphi_1 = \alpha_{\delta 1} \pm \alpha_1$$
 $\varphi_2 = \alpha_{\delta 2} \pm \alpha_2$ $\varphi = 180^0 - (\varphi_1 + \varphi_2)$

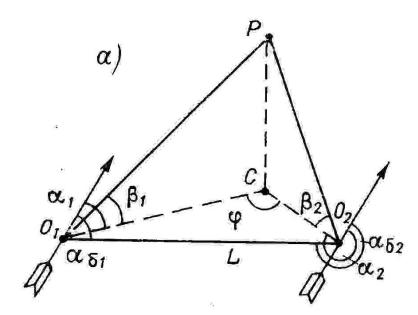

Если $\alpha_2 > \alpha_{\rm E2}$ и $\alpha_1 < \alpha_{\rm E1}$, то используется знак "плюс"; в остальных случаях - знак "минус".

Теорема синусов:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

где a, b, c — стороны треугольника, α , β , γ — соответственно противолежащие им углы, а R — радиус описанной около треугольника окружности.

Для каждого момента времени t с помощью аэрологических теодолитов из точек O_1 и O_2 производится измерение горизонтальных углов α_1 и α_2 . Таким образом, треугольник O_1CO_2 оказывается полностью заданным, так как известна одна из его сторон (сторона L) и все три угла.


Для треугольника $O_1 CO_2$, используя теорему синусов, можно записать (см. рис.):

$$\frac{L}{Sin\,\varphi} = \frac{CO_2}{Sin\,\varphi_1} = \frac{CO_1}{Sin\,\varphi_2}$$

Откуда:

$$CO_2 = \frac{Sin \, \varphi_1}{Sin \, \varphi} L, \qquad CO_1 = \frac{Sin \, \varphi_2}{Sin \, \varphi} L.$$

$$CO_1 = L \frac{\sin(\alpha_2 - \alpha_{E2})}{\sin \varphi}$$

Зная сторону CO₁ прямоугольного треугольника O₁CP можно определить высоту шар-пилота в разные моменты времени

$$H = CP = O_1C tg\beta_1$$

Таким образом, для определения высоты шар-пилота в различные моменты времени не требуется задания вертикальной скорости его подъема — высота рассчитывается по данным угловых измерений от двух теодолитов, расположенных на известном расстоянии друг от друга. Затем скорость и направление ветра определяется аналогично методу однопунктных наблюдений.

На практике для проведения базисных шар-пилотных наблюдений готовят две базы, расположенные приблизительно перпендикулярно друг другу.

Из этих двух баз для проведения конкретного наблюдения выбирают ту, которая расположена перпендикулярно предполагаемому движению шар-пилота.

Это связано с тем, что в случае перемещения проекций шарпилота точно параллельно базе из тригонометрических расчетов нельзя будет определить высоты, на которых будет находиться шарпилот.

Какие будут вопросы?

Поправки к	высоте в	на кривизну	Земли и	рефракцию	радиоволн
------------	----------	-------------	---------	-----------	-----------

ayerati errani degen ya	Вертикальный угол б, град														
Дальность, м	6	9	12	15	18	21	24	27	30	3 6	42	48	54	60	66
		(деления угломера)													
	1-00	1-30	2-00	2—30	3-00	3—50	4-00	4-50	500	600	7—00	8-00	9-00	10-00	1,1-00
20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 95000 100000 115000 115000 125000 135000 140000 145000 145000	23 36 52 71 93 118 146 176 210 246 285 328 373 421 472 525 582 642 705 770 839 910 984 1061 1141 1224 1310	23 36 52 71 92 117 144 174 207 243 281 323 367 415 465 518 574 633 695 759 827 897 970 1046 1125 1207 1291	23 36 51 69 90 114 141 170 203 238 275 317 360 407 456 508 563 621 681 745 811 888 951 1026 1103 1184 1267	22 35 50 68 88 111 138 167 198 232 270 309 352 397 445 496 549 605 665 726 790 858 920 1001 1076 1156 1235	21 33 48 65 85 108 133 161 192 225 261 300 341 385 431 481 532 587 644 704 767 832 900	21 32 47 63 82 103 128 155 185 217 252 289 328 371 416 459 514 565 621 682 740 805	20 31 44 60 79 97 123 149 177 208 241 276 314 355 393 443 491	19 30 42 57 76 94 117 142 168 198 229 260 295 350 380 420	18 28 40 54 71 89 110 134 159 185 216 248 283 319	16 25 36 48 68 80 99 119 142 167 194 222	14 22 31 42 55 70 86 105 124 146 169 194	11 17 24 32 43 54 66 80 96 124 144	8 13 19 25 33 41 51 62 74	6 9 13 18 24 30 37 45 53	4 6 9 12 16 20