Подготовка к 每3

4

Найдите наименьшее (наибольшее) значение функции на промежутке

$$y=3+\frac{5\pi}{4}-5x-52\cos x$$
 на $\left[0;\frac{\pi}{2}\right]$

$$y = 2x^2 - 5x + \ln x - 3$$
 на $\left[\frac{5}{6}; \frac{7}{6}\right]$

$$y = (x - 8) e^{x-7}$$
 на [6; 8]

$$y = \frac{2}{3}x\sqrt{x} - 3x + 1$$
 Ha [1; 9]

$$y = 2^{x^2 + 2x + 5}$$

значение у

Найдите точку минимума (максимума) функции

$$y=3+\frac{5\pi}{4}-5x-52\cos x$$

$$y = 2x^2 - 5x + \ln x - 3$$

$$y = (x - 8) e^{x-7}$$

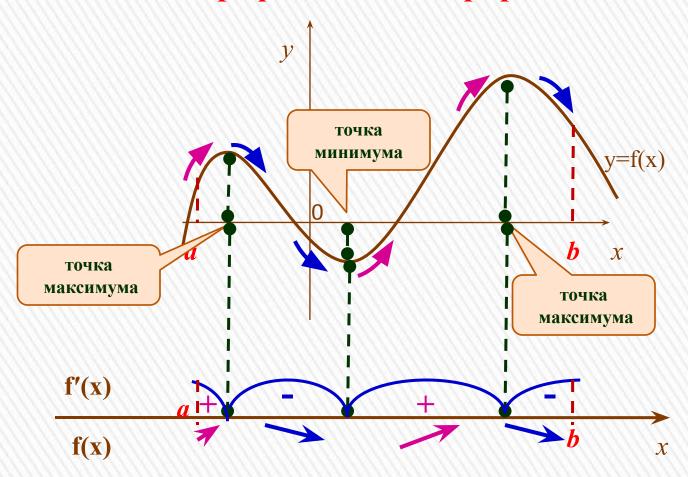
$$y = \frac{2}{3}x\sqrt{x} - 3x + 1$$

$$y = \frac{x^2 - 25}{x}$$

$$y = 2^{x^2 + 2x + 5}$$

значение х

Графическая интерпретация



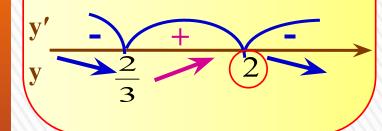
Определение производной.
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$\mathbf{D}(\mathbf{y}) = (-\infty; +\infty)$

$$y' = -4 + 8x - 3x^{2}$$
$$-4 + 8x - 3x^{2} = 0$$

$$D = 16$$

$$x_1 = \frac{2}{3}, x_2 = 2$$



Ответ: 2

Таблица производных.

	a nponoconom.
$(x^p) = p \cdot x^{p-1}$	$(x^2)' = 2x$; $(x^3)' = 3x^2$
$(x)^{\vee}=1$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}; \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}};$
$(e^x)'=e^x$	$(\ln x)' = \frac{1}{x}$
$(\sin x)' = \cos x$	$(\cos x)^{\vee} = -\sin x$
$(tgx)' = \frac{1}{\cos^2 x}$	$(ctgx)' = -\frac{1}{\sin^2 x}$

1.
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

2.
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

4.
$$(c \cdot f(x))' = c \cdot f'(x)$$

5.
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

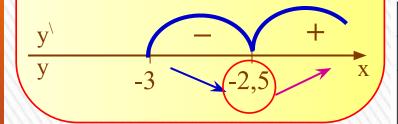
Найдите точку минимума $y = 2x - \ln(x+3) + 7$

Oпределение производной.
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$D(y): x+3 > 0$$
$$x > -3$$

$$y' = 2 - \frac{1}{x+3} = \frac{2x+6-1}{x+3} = \frac{2x+5}{x+3}$$

$$\frac{2x+5}{x+3} = 0 \Leftrightarrow \begin{cases} 2x+5=0\\ x+3 \neq 0 \end{cases}$$



Ответ: -2,5

Таблица производных.

Tuomina nponsoconon.	
$(x^p)' = p \cdot x^{p-1}$	$(x^2)' = 2x ; (x^3)' = 3x^2$
$(x)^{\vee}=1$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}; \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}};$
$(e^x)'=e^x$	$(\ln x)' = \frac{1}{x}$
$(\sin x)' = \cos x$	$(\cos x)' = -\sin x$
$(tgx)' = \frac{1}{\cos^2 x}$	$(ctgx)^{\vee} = -\frac{1}{\sin^2 x}$

1.
$$(f(x) \pm g(x))^{1} = f'(x) \pm g'(x)$$

2.
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

4.
$$(c \cdot f(x))' = c \cdot f'(x)$$

5.
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Найдите точку минимума

функции
$$y = (x^2 - 8x + 8)e^{6-x}$$

Определение производной.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

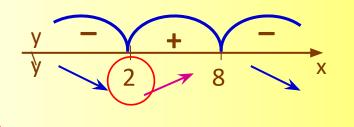
$$\mathbf{D}(\mathbf{y}) = (-\infty; +\infty)$$

$$y' = (x^{2} - 8x + 8)' e^{6-x} + (x^{2} - 8x + 8)(e^{6-x})' =$$

$$= (2x - 8)e^{6-x} + (x^{2} - 8x + 8)e^{6-x}(-1) =$$

$$= e^{6-x}(2x - 8 - x^{2} + 8x - 8) = e^{6-x}(-x^{2} + 10x - 16) =$$

$$= -e^{6-x}(x^{2} - 10x + 16) = -e^{6-x}(x - 8)(x - 2)$$



Ответ: 2

1.
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

2.
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.
$$\left(\frac{f(x)}{g(x)}\right)^{r} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$$

$$4. \left(c \cdot f(x) \right)^{\prime} = c \cdot f^{\prime}(x)$$

5.
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Найдите точку минимума функции

$$y = \frac{2}{3}x^{\frac{3}{2}} - 2x + 1$$

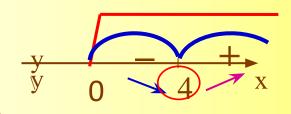
$D(y): x \ge 0$

$$y' = x^{\frac{1}{2}} - 2 = \sqrt{x} - 2$$

$$\sqrt{x}-2=0$$

$$\sqrt{x} = 2$$

$$x = 4$$



Ответ: 4

Определение производной.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Таблица производных.

Tuoringa reponsocorron.	
$(x^p) = p \cdot x^{p-1}$	$(x^2)' = 2x$; $(x^3)' = 3x^2$
$(x)^{\vee}=1$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}; \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}};$
$(e^x)'=e^x$	$(\ln x)' = \frac{1}{x}$
$(\sin x)' = \cos x$	$(\cos x)' = -\sin x$
$(tgx)' = \frac{1}{\cos^2 x}$	$(ctgx)' = -\frac{1}{\sin^2 x}$

- 1. $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- 2. $(f(x) \cdot g(x))^{1/2} = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

3.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

- 4. $(c \cdot f(x))' = c \cdot f'(x)$
- 5. $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

Найдите точку максимума функции $y = -\frac{x^2 + 289}{}$

$$y = -\frac{x^2 + 289}{x}$$

$$y = -\frac{x^2}{x} - \frac{289}{x}$$

$$y = -x - 289 \cdot \frac{1}{x}$$

$$D(y): x \neq 0$$

$$y = -x - 289 \cdot \frac{1}{x}$$

$$y' = -1 - 289 \cdot \left(-\frac{1}{x^2} \right) = -1 + \frac{289}{x^2} = \frac{-x^2 + 289}{x^2} =$$

$$= \frac{289 - x^2}{x^2} = \frac{(17 - x)(17 + x)}{x^2}$$

$$y = -17$$

Ответ: 17

Найдите наибольшее значение функции $y = 4x^2 - 4x - x^3$ на отрезке [1;3]

Определение производной. $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

$\mathbf{D}(\mathbf{y}) = (-\infty; +\infty)$

$$y'=8x-3x^2-4$$

$$-3x^2 + 8x - 4 = 0$$

$$D = 16$$

$$x_1 = \frac{2}{3}, x_2 \neq 2$$

$$y(1) = -1$$

$$y(3) = -3$$

$$y(2) \neq 0$$

Ответ: 0

Таблица производных.

$$(x^{p})' = p \cdot x^{p-1} \qquad (x^{2})' = 2x \; ; \qquad (x^{3})' = 3x^{2}$$

$$(x)' = 1 \qquad \left(\frac{1}{x}\right)' = -\frac{1}{x^{2}}; \qquad (\sqrt{x})' = \frac{1}{2\sqrt{x}} \; ;$$

$$(e^{x})' = e^{x} \qquad (\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x \qquad (\cos x)' = -\sin x$$

$$(tgx)' = \frac{1}{\cos^{2} x} \qquad (ctgx)' = -\frac{1}{\sin^{2} x}$$

1.
$$(f(x) \pm g(x))^{1} = f'(x) \pm g'(x)$$

2.
$$(f(x) \cdot g(x))^{i} = f^{i}(x) \cdot g(x) + f(x) \cdot g^{i}(x)$$

3.
$$\left(\frac{f(x)}{g(x)}\right)^{r} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$$

4.
$$(c \cdot f(x))' = c \cdot f'(x)$$

5.
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Найдите наименьшее значение функции $y = (x-3)(x+3)^2$ на отрезке [-2;2]

Oпределение производной. $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

$\mathbf{D}(\mathbf{y}) = (-\infty; +\infty)$

$$y' = (x+3)^2 + 2(x+3)(x-3)$$

$$(x+3)(x+3+2x-6)=0$$

$$x + 3 = 0$$

$$3x - 3 = 0$$

$$x_1 = -3, x_2 \neq 1$$

$$y(-2) = -5$$

$$y(2) = -25$$

$$y(1) = -32$$

Ответ: -32

Таблица производных.

Tuottuna nponsoconon.	
$(x^p) = p \cdot x^{p-1}$	$(x^2)' = 2x \; ; \qquad (x^3)' = 3x^2$
$(x)^{\vee}=1$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}; \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}};$
$(e^x)'=e^x$	$(\ln x)' = \frac{1}{x}$
$(\sin x)^{\vee} = \cos x$	$(\cos x)' = -\sin x$
$(tgx)^{\prime} = \frac{1}{\cos^2 x}$	$(ctgx)^{i} = -\frac{1}{\sin^2 x}$

1.
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

2.
$$(f(x) \cdot g(x))^{i} = f^{i}(x) \cdot g(x) + f(x) \cdot g^{i}(x)$$

3.
$$\left(\frac{f(x)}{g(x)}\right)^{r} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$$

4.
$$(c \cdot f(x))' = c \cdot f'(x)$$

5.
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Найдите наименьшее значение функции

$$y = \frac{x^2 + 16}{x}$$
 на отрезке [2;8]

$$y = \frac{x^2}{x} + \frac{16}{x}$$
$$y = x + 16 \cdot \frac{1}{x}$$

$$D(y): x \neq 0$$

$$y' = 1 + 16 \cdot \left(-\frac{1}{x^2}\right) = 1 - \frac{16}{x^2} = \frac{x^2 - 16}{x^2}$$

$$\frac{x^2 - 16}{x^2} = 0 \Leftrightarrow \begin{cases} x^2 - 16 = 0 \\ x \neq 0 \end{cases}$$
 Стационарные точки $x = -4;4$

Стационарные точки
$$x = -4;4$$

$$-4 \notin [2;8]$$

$$0 \notin [2;8]$$

$$4 \in [2;8]$$

$$y(2) = 10$$
 $y(8) = 10$ $y(4) = 8$