

Решение задач на тему «Реализация наследственной информации в клетке»

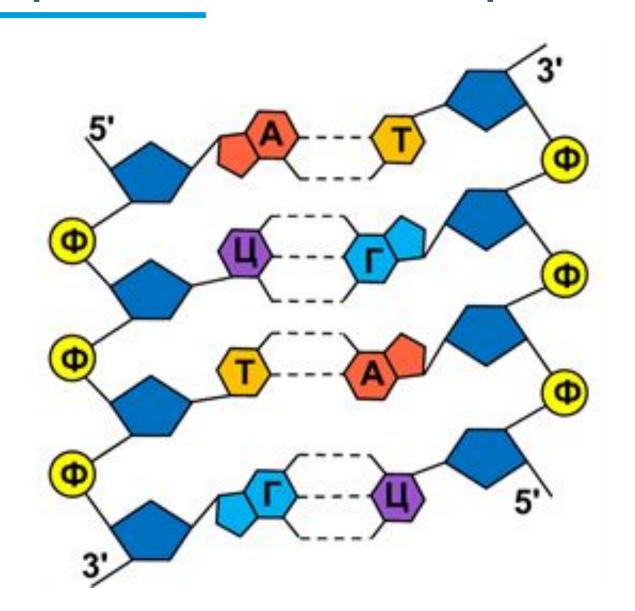
Балакирева Арина Сергеевна

Учитель биологии МБОУ «Псковская инженерно-лингвистическая гимназия»

- Победитель муниципального этапа Всероссийского конкурса «Учитель года – 2014»
- Призёр регионального этапа Всероссийского конкурса «Учитель года – 2014»
- Победитель конкурса лучших учителей РФ, ПНПО (2016)
- Автор статей о методике преподавания биологии

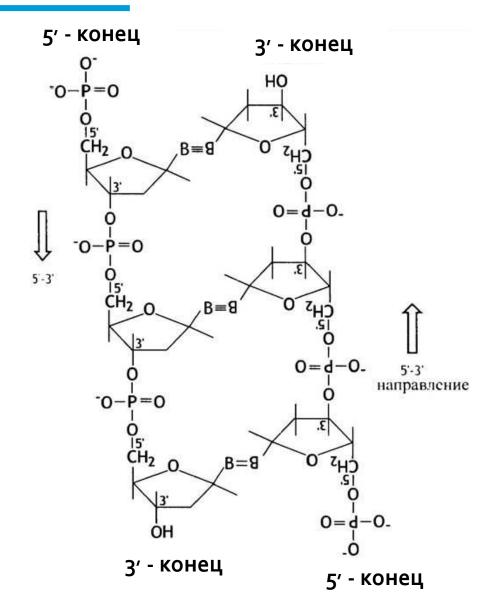
Центральная догма биологии

Информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении


Центральная догма биологии

Информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении

Общие	Специальные	Неизвестные
ДНК <u></u> ДНК	РНК ДНК	Белок ДНК
ДНК → РНК	PHK PHK	Белок — РНК
РНК Белок	ДНК Белок	Белок Белок



Принцип комплементарности

Принцип антипараллельности

Таблица генетического кода

Первое основание	Второе основание				Третье основание
	У	Ц	A	Г	
У	Фен	Сер	Тир	Цис	У
	Фен	Cep	Тир	Цис	ц
	Лей	Cep	_	_	A
	Лей	Cep	_	Три	Г
ц	Лей	Про	Гис	Apr	У
	Лей	Про	Гис	Арг	ц
	Лей	Про	Глн	Арг	A
	Лей	Про	Глн	Арг	Г
A	Иле	Tpe	Асн	Сер	У
	Иле	Tpe	Асн	Сер	ц
	Иле	Tpe	Лиз	Арг	A
	Мет	Tpe	Лиз	Apr	Г
г	Вал	Ала	Асп	Гли	У
	Вал	Ала	Асп	Гли	ц
	Вал	Ала	Глу	Гли	A
	Вал	Ала	Глу	Гли	Г

Решение задач на тему «Реализация наследственной информации в клетке»

Алгоритм решения задачи № 1

Задача 1

ДНК:

Смысловая цепь:

5[,] - ГТ Ц А Ц А Г Ц Г А Т Ц А А Т — 3[,]

Транскрибируемая цепь:

 3^{9} - ЦАГТГТЦГЦТАГТТА – 5^{9}

Определите

- последовательность аминокислот
- изменения во фрагменте молекулы ДНК
- свойство генетического кода

Определить:

1) Последовательность аминокислот, обосновать своё решение

Решение:

```
ДНК:5' - ГТ Ц А Ц А Г Ц Г А Т Ц А А Т — 3' 3' - Ц А Г Т Г Т Ц Г Ц Т А Г Т Т А — 5'
```

• И-РНК: 5' - ГУЦАЦАГЦГАУЦААУ—3'

Определить:

1) Последовательность аминокислот, обосновать своё решение

Решение:

```
ДНК:5' - ГТ Ц А Ц А Г Ц Г А Т Ц А А Т — 3' 3' - Ц А Г Т Г Т Ц Г Ц Т А Г Т Т А — 5'
```

- И-РНК: 5'-ГУЦАЦАГЦГАУЦААУ—3'
- Полипептид: Вал-Тре-Ала-Иле-Асн

Определить:

2. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про?

Определить:

2. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про?

Решение:

- Аминокислоте Тре соответствует кодон АЦА
- Аминокислоте пролин (Про) соответствуют кодоны и-РНК ЦЦУ, ЦЦЦ, **ЦЦА**, ЦЦГ

Определить:

2. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про?

Определить:

2. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про?

Решение:

- И-РНК (возможно): ЦЦУ, ЦЦЦ, <u>ЦЦА</u>, ЦЦГ
- В транскрибируемой цепи ДНК триплет ТГТ мог поменяться на: ГГА, ГГГ, <u>ГГТ</u>, ГГЦ
- В смысловой цепи ДНК триплет АЦА мог поменяться на: ЦЦТ, ЦЦЦ, **ЦЦА**, ЦЦГ


```
ДНК:
Смысловая цепь
5' - ГТ Ц А Ц А Г Ц Г А Т Ц А А Т — 3'
Транскрибируемая цепь:
3' - Ц А Г Т Г Т Ц Г Ц Т А Г Т Т А — 5'
```

ЦАГ, ЦАТ – валин ТГТ – треонин ГГТ – пролин

Определить:

Какое свойство генетического кода определяет возможность существования разных фрагментов?

Решение:

Свойство избыточность или вырожденность – одну аминокислоту кодирует несколько триплетов.

Решение задач на тему «Реализация наследственной информации в клетке»

Алгоритм решения задачи № 2

Задача 2

ДНК

Смысловая цепь:

5[,] - А А Т Г Ц Г Т А А Ц Г А Ц Г Т Т Т Ц Г— 3[,]

Транскрибируемая цепь:

 3^{7} - T T A Ц Г Ц A T T Г Ц T Г Ц A A A Г Ц — 5^{7}

Определите:

- Последовательность аминокислот, объясните
- При ответе учитывайте, что полипептидная цепь начинается с аминокислоты Мет.

Решение:

ДНК: 5^{7} - ААТГЦГТААЦГАЦГТТТЦГ— 3^{7}

 3^{7} - TTA U Γ U U A T T Γ U U A A A C U U U U

• И-РНК: 5[,] - А А У Г Ц Г У А А Ц Г А Ц Г У У У Ц Г — 3[,]

Решение:

```
ДНК: 5^{7} - ААТГЦГТААЦГАЦГТТТЦГ— 3^{7} 3^{7} - Т ТАЦГЦАТТГЦТГЦАААГЦ— 5^{7}
```

- И-РНК: 5[,] А **А** УГЦГУААЦГАЦГУУУЦГ— 3[,]
- Аминокислоте Мет соответствует кодон АУГ на и-РНК
- Кодону АУГ соответствует триплет ТАЦ на транскрибируемой ДНК.

Решение:

```
ДНК: 5^{7} - ААТГЦГТААЦГАЦГТТТЦГ— 3^{7} 3^{7} - ТТАЦГЦАТТГЦАААГЦ— 5^{7}
```

- И-РНК: 5[,] А **АУГ**ЦГУААЦГАЦГУУУЦГ— 3[,]
- Полипептид: мет-арг-асн-асп-вал-сер

Решение задач на тему «Реализация наследственной информации в клетке»

Алгоритм решения задачи № 3

Задача 3

ДНК:

Смысловая цепь:

5[,] - А Т Ц Г Ц Г А Т Ц Г Ц А Т Г А— 3[,]

Транскрибируемая цепь:

 3^{7} - ТАГЦГЦТАГЦГТАЦТ— 5^{7}

Определите:

- нуклеотидную последовательность участка т-РНК,
- аминокислоту, которую будет переносить эта т-РНК
- третий триплет соответствует антикодону т-РНК.

1. Установите нуклеотидную последовательность участка т-РНК, который синтезируется на данном фрагменте

```
ДНК: 5<sup>,</sup> - АТЦГЦГАТЦГЦАТГА— 3<sup>,</sup> 3<sup>,</sup> - ТАГЦГЦТАГЦГТАЦТ— 5<sup>,</sup> т-РНК: 5<sup>,</sup> - АУЦГЦГАУЦГЦАУГА— 3<sup>,</sup>
```


2. Определите аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК.

```
ДНК: 5<sup>,</sup> - А Т Ц Г Ц Г А Т Ц Г Ц А Т Г А— 3<sup>,</sup> 3<sup>,</sup> - Т А Г Ц Г Ц Т А Г Ц Г Т А Ц Т— 5<sup>,</sup>
```

- т-РНК: 5[,] АУЦГЦГ**АУЦ**ГЦАУГА 3[,]
- Антикодон т-РНК 5⁻
 А У Ц- 3⁻
- Кодон и-РНК: 3⁻ У А Г 5⁻

- 2. Определите аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК.
- Антикодон т-РНК 5[,] А У Ц- 3[,]
- Кодон и-РНК: 3[,] У А Г 5[,]
- Кодон и-РНК: 5[,] ГАУ 3[,]

- 2. Определите аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК.
- Антикодон т-РНК 5[,] А У Ц- 3[,]
- Кодон -РНК: 3[,] У А Г 5[,]
- Кодон и-РНК: 5[,] ГАУ 3[,]
- Аминокислота: асп

Решение задач на тему «Реализация наследственной информации в клетке»

Алгоритм решения задачи № 4

Задача 4

В рибосому входят молекулы т-РНК в следующей последовательности (указаны антикодоны в направлении от 5, к 3, концу): Ц А Г, Ц Ц У, Ц А У, Г Ц У, Ц А Ц.

Задача 4

В рибосому входят молекулы т-РНК в следующей последовательности (указаны антикодоны в направлении от 5, к 3, концу): Ц А Г, Ц Ц У, Ц А У, Г Ц У, Ц А Ц.

Установите:

- нуклеотидную последовательность участка и-РНК,
- аминокислотную последовательность фрагмента полипептида
- как изменится последовательность полипептида

1. Установите нуклеотидную последовательность участка и-РНК, который служит матрицей при синтезе полипептида.

Антикодоны т-РНК: Ц А Г, Ц Ц У, Ц А У, Г Ц У, Ц А Ц (в направлении от $5^{,}$ к $3^{,}$)

Антикодон т-РНК: 5^{-} -Ц А Γ - 3^{-}

Кодон и-РНК: 3[,] -ГУ Ц- 5[,]

Кодон и-РНК: $5^{,}$ -ЦУГ - $3^{,}$

1. Установите нуклеотидную последовательность участка и-РНК, который служит матрицей при синтезе полипептида.

Антикодоны т-РНК: Ц А Г, Ц Ц У, Ц А У, Г Ц У, Ц А Ц (в направлении от 5^{7} к 3^{7})

• Антикодон т-РНК: 5[,] -Ц А Г- 3[,]

• Кодон и-РНК: 3, -ГУ Ц- 5,

• Кодон и-РНК: 5⁻, -ЦУГ - 3⁻

• И-РНК: 5[,] Ц У Г - А Г Г - А У Г - А Г Ц - Г У Г 3[,]

- 1. Определите аминокислотную последовательность этого фрагмента полипептида. Антикодоны т-РНК: Ц А Г, Ц Ц У, Ц А У, Г Ц У, Ц А Ц (в направлении от 5, к 3,)
- И-РНК: 5, ЦУГ-АГГ-АУГ-АГЦ-ГУГ3,
- Фрагмент полипептида: Лей Арг Мет Сер Вал

- 1. Как изменится последовательность полипептида, если вместо т-РНК с антикодоном 5, -ЦЦУ- 3, с рибосомой свяжется т-РНК, несущая антикодон 5,-УЦУ- 3,?
- Антикодон т-РНК: 5[,] -УЦУ- 3[,]
- И-РНК: 5[,] -АГА- 3[,]
- Аминокислота: арг

Решение задач на тему «Реализация наследственной информации в клетке»

Алгоритм решения задачи № 5

Вирусная РНК: 5, - ЦГУАГГУАЦЦГГ— 3,

Определите:

- последовательность вирусного белка, если матрицей для синтеза и-РНК служит цепь, комплементарная вирусной РНК.
- последовательность двуцепочечного фрагмента ДНК

в-РНК: 5, - ЦГУАГГУАЦЦГГ— 3,

• ДНК: 3[,] - Г Ц А Т Ц Ц А Т Г Г Ц Ц - 5[,]

• ДНК: 5[,] - ЦГТАГГТАЦЦГГ- 3[,]

в-РНК: 5^{9} - ЦГУАГГУАЦЦГГ – 3^{9}

Смысловая ДНК: 5, - ЦГТАГГТАЦЦГГ-3,

Транскрибируемая ДНК: 3[,] - Г Ц А Т Ц Ц А Т Г Г Ц Ц - 5[,]

в-РНК: $5^{,}$ - ЦГУАГГУАЦЦГГ – $3^{,}$

Смысловая ДНК: 5, - ЦГТАГГТАЦЦГГ-3,

Транскрибируемая ДНК: 3[,] - Г Ц А Т Ц Ц А Т Г Г Ц Ц - 5[,]

И-РНК: 5[,] - ЦГУАГГУАЦЦГГ - 3[,]

Белок: Арг – Арг – Тир – Арг

Решение задач на тему «Реализация наследственной информации в клетке»

Алгоритм решения расчётных задач

Определите, во сколько раз молекула белка цитохрома С из сердечной мышцы человека легче, чем кодирующий её структурный ген. Цитохром С состоит из 104 аминокислотных остатков.

Определите, во сколько раз молекула белка цитохрома С из сердечной мышцы человека легче, чем кодирующий её структурный ген. Цитохром С состоит из 104 аминокислотных остатков.

Средняя молекулярная масса одного аминокислотного остатка — 110 а.е.м. Средняя молекулярная масса одного нуклеотида — 345 а.е.м.

Решение:

- 1) Масса белка цитохром C: 104*110= 11440 а.е.м.
- 2) Количество нуклеотидов в двуцепочечной молекуле ДНК, кодирующей белок: 104*3*2= 624
- 3) Масса гена: 624*345= 215280 а.е.м.
- 4) Молекула белка цитохрома С из сердечной мышцы человека легче, чем кодирующий её структурный ген: 215280/11440= 18,8 раз.

В биосинтезе участвовала и-РНК, состоящая из 132 нуклеотидов.

Определите

- число аминокислот, входящих в кодируемый и-РНК белок,
- число молекул т-РНК, участвующих в процессе биосинтеза этого белка,
- количество триплетов в гене, кодирующем первичную структуру белка.

Решение:

- Количество кодонов в и-РНК: 132/3= 44
- Количество аминокислотных остатков -44

Решение:

2. Один триплет (кодон) кодирует одну аминокислоту, следовательно, количество триплетов в гене - 44.

Решение:

3. Одна молекула т-РНК транспортирует одну аминокислоту, следовательно количество молекул т-РНК, участвующих в биосинтезе — 44.