

Stereoselective Total Syntheses of Guanacastepenes N and O

Shao-Zheng Peng and Chin-Kang Sha*

Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, ROC

S Supporting Information

ABSTRACT: Total syntheses of (\pm) -guanacastepenes N and O were accomplished with 2-cycloheptenone as starting material. The six- and five-membered rings of the core [5, 7, 6] ring skeleton were constructed with an intramolecular Diels—Alder reaction and α -carbonyl radical cyclization. The quaternary centers and their stereochemistry were established with sequential Cu(I)-mediated conjugate additions. A sequence with dihydroxylation, conjugate addition, and β -

elimination was devised to incorporate all oxygen functionalities at positions. The total synthesis is adaptable for the synthesis of enantiopure guanacastepenes N and O using chiral intermediate (R)-3-vinyl-2-cycloheptenol obtained from lipase-catalyzed kinetic resolution.

DOI: 10.1021/acs.orglett.5b01498

Scheme 1. Retrosynthesis of Guanacastepenes N and O

Scheme 2. Synthesis of Compounds 17 and 18

Scheme 3. Synthesis of Enone 10a

10a

Scheme 4. Synthesis of Diol 21

Scheme 5. Synthesis of Compounds 28 and 29

Scheme 6. Synthesis of Enones 30 and 31 via β -Elimination Reaction

Scheme 7. Synthesis of Dienone 9

9

Scheme 8. Synthesis of Compounds 37a, 37b, and 38

Scheme 9. Synthesis of Furan 42

Scheme 10. Synthesis of Lactones 45 and 46

2. DMDO, CH₂Cl₂ 62% for 2 steps

Scheme 11. Synthesis of Guanacastepenes N and O

Scheme 12. Synthesis of Chiral Dienol (R)-16

