Системный анализ

Системный подход

- Основой *качественного анализа* является **системный подход**.
- Суть системного подхода –
- 1) в рассмотрении объекта *как системы взаимосвязанных* элементов,
- 2) в комплексном применении методов анализа и проектировани (система - процесс проектирования).
- Применение системного подхода приводит к возникновению *синергетического* эффекта (превышению совместного действия элементов над суммой действий каждого из них по отдельности).

Системный подход

- *Системный подход* направление методологии научного познания, в основе которого лежит рассмотрение объектов как систем.
- Системный подход ориентирует исследователя на раскрытие целостности объекта, на выявление многообразных связей в нем и сведение их в единую теоретическую картину.
- *Система* множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство.
- В современной науке исследование систем разного рода проводится в рамках системного подхода.

Системный подход

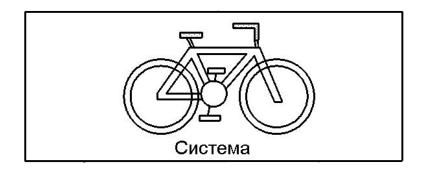
Системный подход используется во всех областях знания, хотя в различных областях он проявляется поразному:

- В технических науках речь идет о системотехнике,
- В кибернетике о системах управления,
- В биологии о *биосистемах* и их структурных уровнях,
- В социологии о возможностях *структурно-функционального* подхода,
- В медицине о *системном лечении* сложных болезней терапевтами широкого профиля.

Задачи, которые решает системный подход:

- Позволяет *разработать* методы исследования и конструирования сложноорганизованных объектов (например, информационная система);
- *Развивает* методы познания, методы исследования и конструирования (системы организации проектирования, системы управления разработками и т.п.);
- *Позволяет объединить* знания различных, традиционно разделенных дисциплин;
- Позволяет глубоко, а главное в совокупности с создаваемой информационной системой, *исследовать* предметную область.

Системный подход обеспечивает:


- Устойчивость объекта к внешним и внутренним воздействиям.
- Достижение целей, функций процессов, ради которых проектируется объект. Минимизация побочных вредных эффектов.
- Необходимые формы организации взаимодействия объекта с человеком.
- Поддержание на заданном уровне *готовности* объекта.

Системный анализ

- Системный анализ совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера.
- Опирается на *системный подход*, а также на ряд математических дисциплин и современных подходов управления.
- Основная процедура системного анализа построение обобщенной **модели**, отображающей взаимосвязи реального объекта;
- Техническая основа системного анализа вычислительные машины и информационные системы.

Используя синтетический и аналитический методы познания получаем:

- Модели состава и структуры надсистемы как побочные продукты
- Модель черного ящика нашей системы
- Модель состава нашей системы
- Модель структуры нашей системы
- Модель *черного ящика* для *каждого элемента* нашей системы.

Методика системного анализа

- Первый этап представление изучаемого объекта в виде системы. Этот шаг сводится к выявлению и определению следующих составляющих:
 - 1. Надсистема и другие внешние подсистемы;
 - 2. Главная полезная функция объекта;
 - 3. Перечень подсистем объекта;
 - 4. Структура системы.
- Второй этап *системное исследование* объекта

Определение надсистемы

Исходная система	Варианты надсистемы
Электромотор	Двигатель Электродрель Зубоврачебный кабинет Изделие электротехнической промышленности

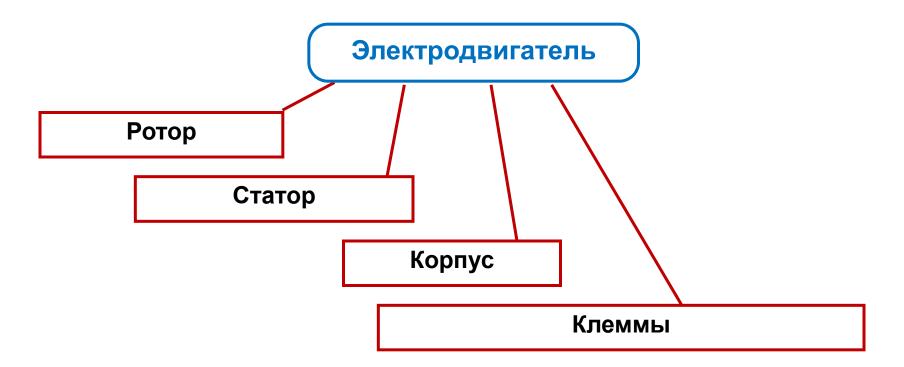
Анализ и классификация

Для грамотного проведения анализа нужно в совершенстве знать и уметь различать четыре логических оператора (мысленных действия):

- деление
- расчленение
- обобщение
- соединение

Деление

- **Деление** это распределение на группы всех тех объектов, которые мыслятся в исходном или **делимом понятии**.
- Эти группы называются членами деления.
- Признак, по которому производится логическое деление, назыв Двигатели
 Паровая машина
 Пневмодвигатель
 Электродвигатель
 Внутреннего сгорания


Деление

Делимое понятие является *родом*, а члены деления - видами по отношению к данному роду. Каждое из видовых понятий может в свою очередь стать объектом деления, и т.д. Такое многоступенчатое разветвленное деление и принято называть классификацией.

Царство животных делится на типы (членистоногие, позвоночные, и т.д.), типы - на классы (тип позвоночных - на классы млекопитающих, птиц, рыб, и т.д.), классы - на отряды, далее идут семейства, роды и, наконец, виды (а иногда еще и подвиды).

Расчленение

• Расчленение - мысленное разделение объекта на составные части.

Деление и расчленение

Тест-вопросы для деленшя

- Какие известны вариан ВРДАННОНО В Бъекта (различающиеся по данному признаку)?
- Из каких частей состоит данный объект?

Тест-вопросы для проверки правильности проведенной операции (после ее завершения):

- Любой из членов *деления* в то же время является *делимым* понятием.
- Любой из продуктов расчленения уже не является расчленяемым понятием.

Пример: дерево

Операция деления

- *Тест-вопрос:* Какие известны разновидности дерева (различающиеся по виду органов, в которых проходит фотосинтез)?
- *Ответ:* Хвойные, лиственные и безлиственные (фотосинтез идет в тонких ветках или стеблях).

Операция расчленения

- Тест-вопрос: "Из каких частей состоит дерево?"
- Ответ: Из корневой системы, ствола и кроны.

Четыре правила деления

- 1. Деление должно проводиться только по одному основанию.
- 2. Деление должно быть соразмерным или исчерпывающим,
- 3. Члены деления должны быть альтернативными по одному основанию.
- 4. Деление должно быть непрерывным, однопорядковым.

Из китайской энциклопедии "Небесная империя благодетельных знаний"

Животные делятся на:

- а) принадлежащих Императору,
- б) на бальзамированных,
- в) прирученных,
- г) сосунков,
- д) сирен,
- е) сказочных,
- ж) отдельных собак,
- з) включенных в эту классификацию,
- и) бегающих как сумасшедшие,
- к) бесчисленных,
- л) нарисованных тончайшей кистью из верблюжьей шерсти,
- м) прочих,
- н) только что разбивших цветочную вазу,
- о) похожих издали на мух.

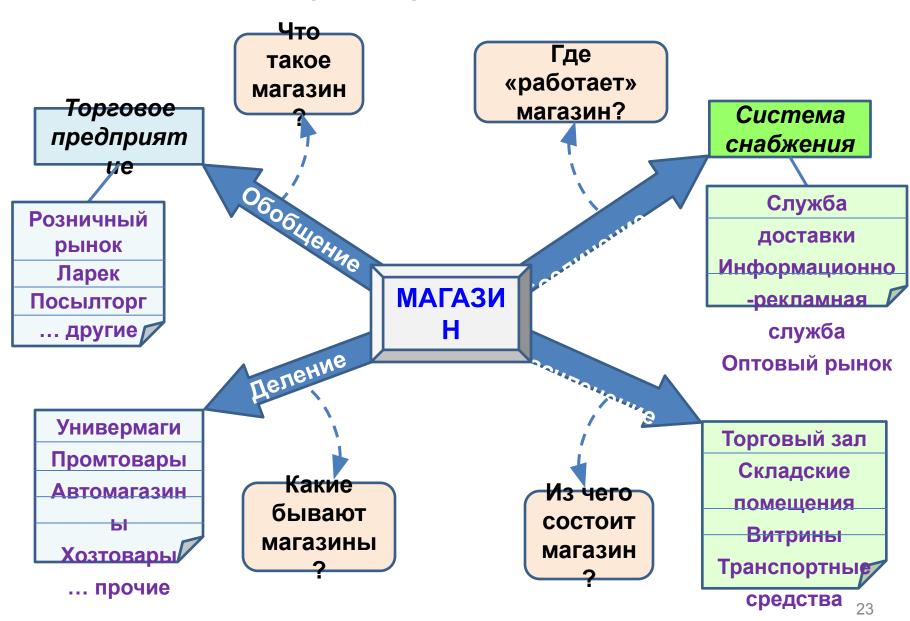
Обобщение

• Обобщение - это логическая операция, заключающаяся в том, что для рассматриваемого понятия (или группы понятий) находят более широкое по объему понятие, в объем которого входит и объем обобщаемого исходного понятия (или объемы исходных понятий).

Соединение

• Соединение - операция противоположная расчленению.

Исходный объект будет лишь составной частью надсистемы, полученной в результате соединения.


В процессе соединения исходный объект вводится во взаимодействие с другими, принципиально иными по своему функциональному назначению объектами.

Пример: гвоздь

... прочие

Пример: магазин

Первый этап системного анализа: представление изучаемого объекта в виде системы

- 1. Определение надсистемы и других внешних подсистем
- 2. Определение главной полезной функции объекта
- 3. Определение подсистем объекта
- 4. Определение структуры системы

Определение надсистемы

Исходная система	Варианты надсистемы
Электромотор	Двигатель Электродрель Зубоврачебный кабинет Изделие электротехнической промышленности

Определение надсистемы:

- 1. Ответьте на вопрос:
 - Является ли сама <исходная система> <надсистемой>?

Правильный ответ должен быть:

– Нет, не является.

Например,

- Является ли сам электромотор двигателем?
- Да.

Следовательно двигатель – это *не надсистема*, а просто обобщение понятия

Определение надсистемы:

- 2) Проверьте, корректно ли звучит вопрос для выбранной надсистемы из списка:
- Какую функцию выполняет <исходная система> в <надсистеме>?
- Этот вопрос, если он оказывается корректным, сразу же выводит на ответ о **главной полезной функции** нашей системы.

Исходная система	Варианты надсистемы
Немецкая овчарка	Порода собак Население моей квартиры Питомник Теплокровное животное
Токарный станок	Устройство для обработки металла Цех металлообработки Завод металлоконструкций Машиностроение Магазин "Домашний мастер"
Деньги	Платежное средство Рынок Валюта Товарообмен Семейный бюджет

Второй этап – системное исследование объекта

Полное и правильное представление о системе можно получить лишь проведя это исследование в трех аспектах:

- предметном
- функциональном
- историческом

Направленность анализа: «внутрь» и «наружу»

Предметный анализ

Состоит из двух частей:

- Анализ строения и внутренних связей системы
- Анализ строения надсистемы и внешних связей исследуемой системы

Используются статические свойства систем:

- ✓ Целостность
- ✔ Открытость
- ✓ Внутренняя неоднородность
- ✓ Структурированность

Предметный анализ

Анализ строения и внутренних связей системы:

- Из чего состоит система?
 (Определение состава системы)
- Как связаны между собой элементы системы?
 (Анализ структуры системы)

Анализ строения надсистемы и внешних связей исследуемой системы:

- Какие еще системы входят в надсистему, кроме нашей?
- Как в надсистеме наша система связана с другими?

Функциональный анализ

Состоит из двух частей:

- Анализ внутреннего функционирования системы, "работы" ее связей
- Анализ внешнего функционирования системы, ее входов и выходов

Используются динамические и синтетические свойства систем:

- Функциональность
- ✓ Стимулируемость
- ✓ Эмерджентность

Функциональный анализ

Анализ внутреннего функционирования системы, "работы" ее связей:

- Как работает каждый элемент системы?
- Какие внутренние функции выполняет каждая из подсистем, входящих в нашу систему?

Анализ внешнего функционирования системы, ее входов и выходов:

- Как наша система в целом работает в надсистеме?
- Какие внешние задачи решает система?

Исторический анализ

Исследование динамики развития системы

Жизненный цикл любой системы разделяют на следующие этапы:

- возникновение,
- становление,
- эволюция,
- разрушение или преобразование

Исторический анализ состоит из двух частей:

- Генетический анализ системы
- Прогноз развития системы

Исторический анализ

Генетический анализ системы:

- Когда и в каком виде возникла система?
- На каком этапе жизненного цикла находится система?

Прогноз развития системы:

- Как, в каком направлении будет развиваться система?
- Что будет модифицироваться в системе в первую очередь?

Анализ технических систем

Системы двух типов:

- типа "*предмет*" (устройства, машины, аппараты, приборы)
- типа "процесс" (способы, технологии).

Предметная техническая система

• Искусственно созданное единство целесообразно организованных в пространстве и времени и находящихся во взаимной связи искусственных или природных элементов, имеющее целью своего функционирования удовлетворение некоторой общественной потребности.

Процессная техническая система

Искусственно выстроенная последовательность целесообразно организованных в пространстве и времени и находящихся во взаимной связи действий и операций, имеющая целью своей реализации удовлетворение некоторой общественной потребности за счет обработки или преобразования материальных объектов.

Примеры предметных технических систем:

- Автозавод
- Сборочный цех автозавода
- Конвейер сборочного цеха
- Электромотор
- Статор электромотора
- Ручная отвертка
- Телевизор
- Тетрадь

Примеры технических систем типа «процесс»:

- Технология производства труб
- Икэбана
- Удаление больного зуба
- Коллекционирование марок
- Фотографирование
- Оформление презентации
- Изучение иностранного языка
- Сборка компьютера
- Приготовление яичницы

В состав ТС входят те элементы, наличие и взаимодействие которых необходимо и достаточно для осуществления ГПФ этой ТС.

- 1. *Возможности* ТС должны обеспечивать выполнение ГПФ системы
- 2. *Потребности* ТС не должны превышать допустимых затрат на систему.

- Возможности ТС что и как делает данная система
- Потребности TC что необходимо для ее существования и функционирования.

Качество системы выражают обычно через ее эффективность:

Э = (полезный результат) / (затраты)

или, в случае несоизмеримости числителя и знаменателя, через набор физических эффективностей:

$$\sum Эф = (полезный выход) / (вход)$$

где входы и выходы рассматриваются как потоки (энергии, вещества или информации).

Пять видов физической эффективности

Вид физической эффективности	Вариант именования эффективности
Коэффициент использования энергии	кпд
Коэффициент использования времени	Скважность
Коэффициент использования массы (веса)	Полезная нагрузка
Коэффициент использования места (пространства)	Плотность упаковки (монтажа)
Коэффициент использования информации	Избыточность информации

Ошибки при построении модели черного ящика приводят к тому, что кроме полезных входов и выходов, могут появляться бесполезные, и даже вредные. Таким образом, и по входам, и по выходам ТС всегда обладает некоторой избыточностью, которая непосредственно связана с эффективностью.

- Внешний (то есть с точки зрения надсистемы) предметный анализ и анализ функций системы фактически имеют целью выявить ГПФ системы и определить полезные входы и выходы исследуемой ТС.
- На этапах внутреннего предметного и функционального анализа выявляются многие побочные входы и выходы и происходит более четкое их разделение на полезные, бесполезные и вредные.

Последовательность операций внутреннего предметного и функционального исследования TC:

- Составление перечня элементов ТС
- Составление перечня попарных взаимодействий элементов и определение результата взаимодействий, оформление матрицы или графа взаимодействий
- Составление списка возможностей TC, которые обеспечиваются взаимодействием и свойствами элементов
- Определение подсистем данной ТС (одновременно с выявлением функций этих подсистем в данной системе)