Особенности структурирования информационных систем

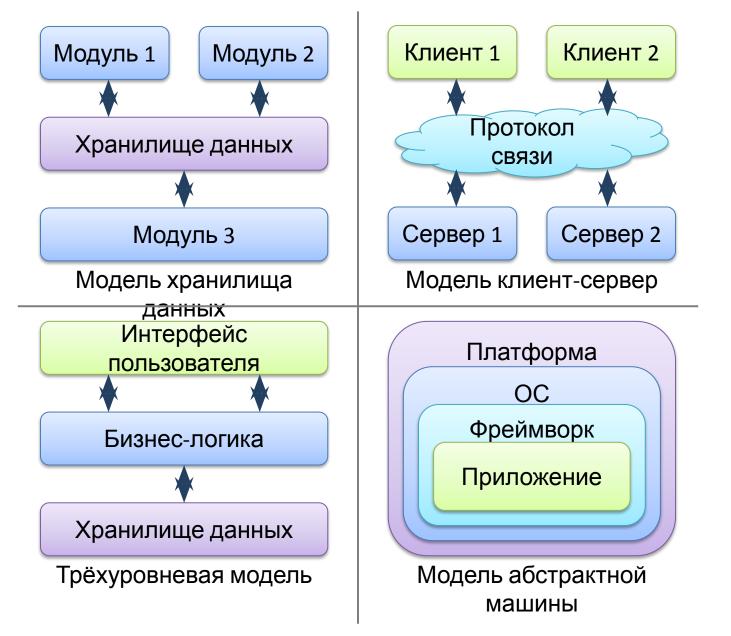
- •Структурирование системы
- •Моделирование управления
- •Модульность
- •Принцип информационной закрытости
- •Связность модуля
- •Сцепление модулей
- •Метрики графа модулей

Проектирование

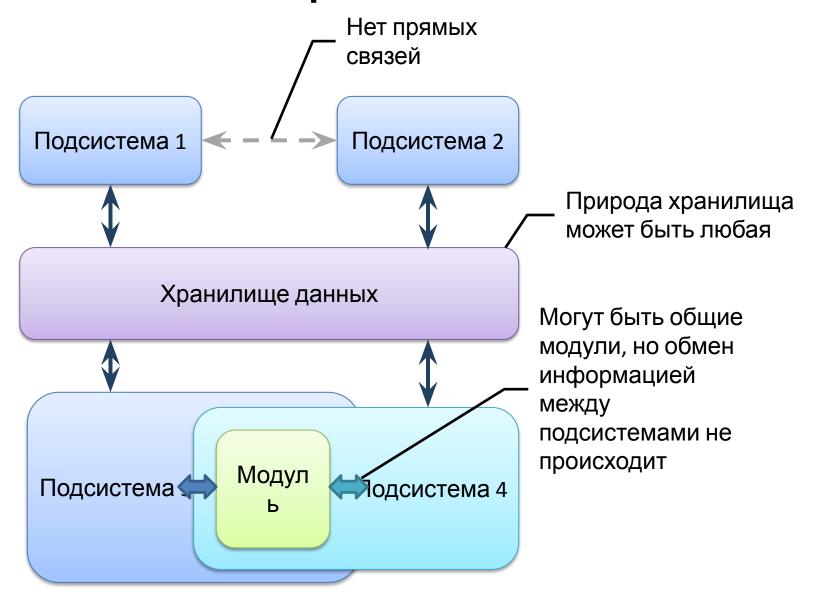
Проектирование

Структурирование системы

- Выделяем несколько подсистем
- Каждая подсистема решает определённый круг задач
- Определяем способ взаимодействия подсистем


Моделирование управления

- Определяем управляющие связи между подсистемами
- «Кто кем командует?»


Декомпозиция подсистем

- Выделяем специализированные модули
- Каждый модуль решает узкий круг задач
- Разные подсистемы могут использовать один и тот же модуль

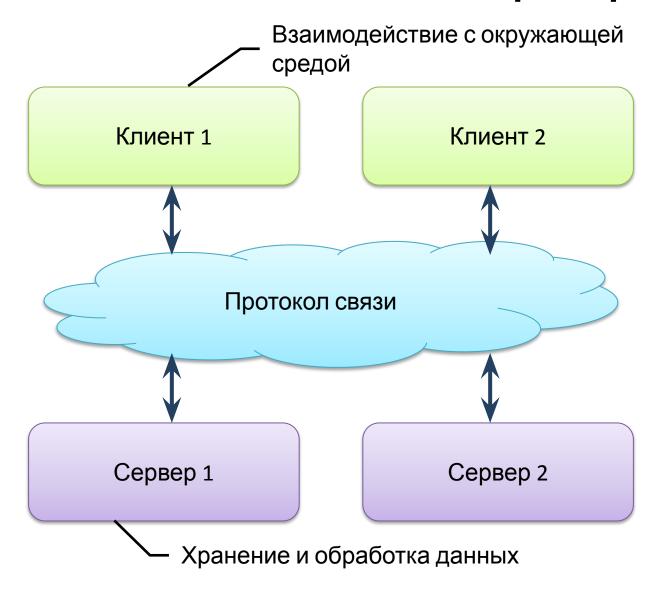
Структурирование системы

Модель хранилища данных

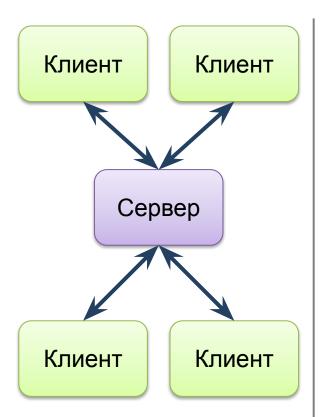
Модель хранилища данных

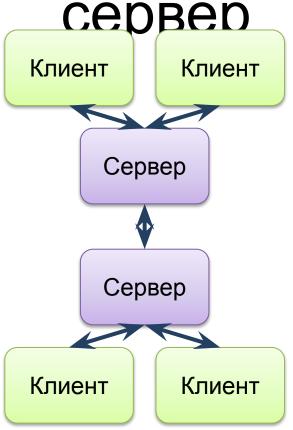
Недостатки

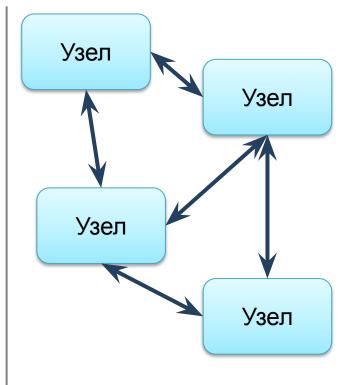
- Смена способа хранения данных требует переделки все системы
- Изменение структуры хранилища затронет все подсистемы, работающие с этими данными
- Низкая скорость взаимодействия между подсистемами
- Проблемы с реализацией одновременного доступа к


Преимущества

- Простота системы
- Легко расширять систему новыми подсистемами
- Можно использовать разные ЯП для подсистем
- Легко сохранять и восстанавливать состояние системы


Используется

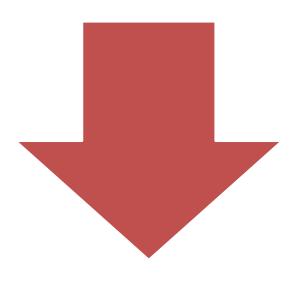

- Утилиты, работающие в пакетном режиме
- Веб-сайты


Модель клиент-сервер

Варианты модели клиент-

Централизованная

- Клиенты используют единый сервер
- Этот сервер является единой точкой отказа


Федеративная

- Сервер обслуживает свою группу клиентов
- Серверы могут взаимодействовать между собой

Одноранговая

- Каждый узел может играть роль как клиента, так и сервера
- Проблемы с поиском соседних узлов

Централизация

Минусы

- Отказ сервера приводит к отказу системы
- Меньшая автономность клиентов
- Высоконагруженный сервер сложнее масштабировать, чем много дешёвых клиентов

Плюсы

- Проще поддерживать данные актуальными
- Проще производить анализ работы системы
- Проще организовать резервирование и защиту данных
- Клиентские устройства проще заменять

Трёхуровневая модель

Сетевые приложения	Основная задача	Монолитные приложения
Слой представления		
Клиентское приложение	Взаимодействие с пользователем	Графический интерфейс
Слой бизнес-логики		
Сервер приложений	Преобразование информации	Модули логики
Слой управления данными		
Сервер баз данных	Хранение состояния системы	Хранилище в памяти Смешанные хранилища

Трёхуровневая модель

У представления нет прямого доступа к хранилищу, как в МVC

Недостатки

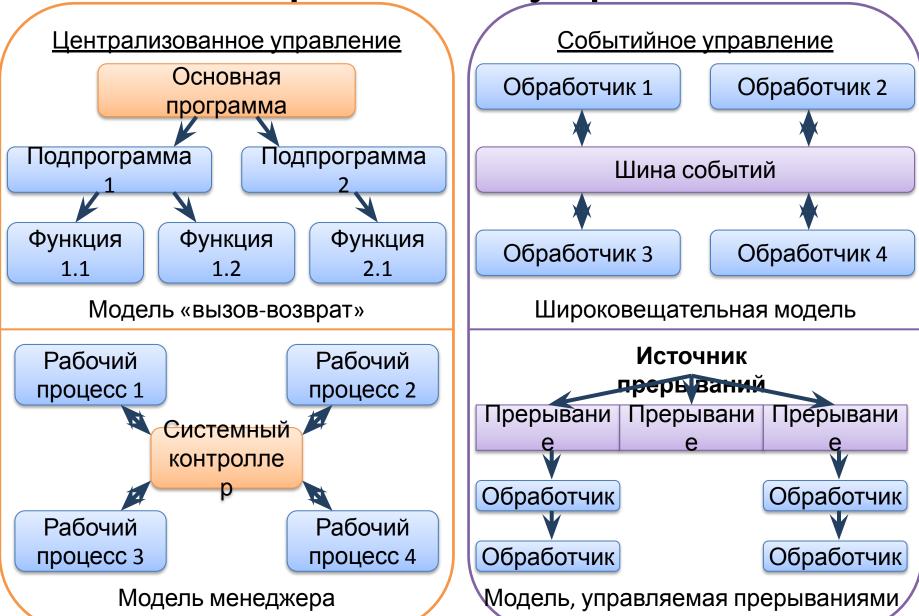
 Логика вынуждена заниматься «переброской» данных тудасюда.

Достоинства

- Проще модифицировать отдельные слои
- Проще повторно использовать наработки в слоях представления и управления данными

Модель абстрактной машины

Недостатки


- Каждый слой абстракции увеличивает потребность в ресурсах
- Труднее решать задачи, которые задействуют несколько уровней

Достоинства


- Упрощается реализация каждого следующего слоя
- Возможна замена реализации одного из слоёв

- Фреймворки и библиотеки
- Приложения с возможностью скриптинга/автоматизации

Моделирование управления

Модель «вызов-возврат»

Недостатки

- Не очень удобна, если требуется реагировать на поступающие события
- Плохо совместима с GUI

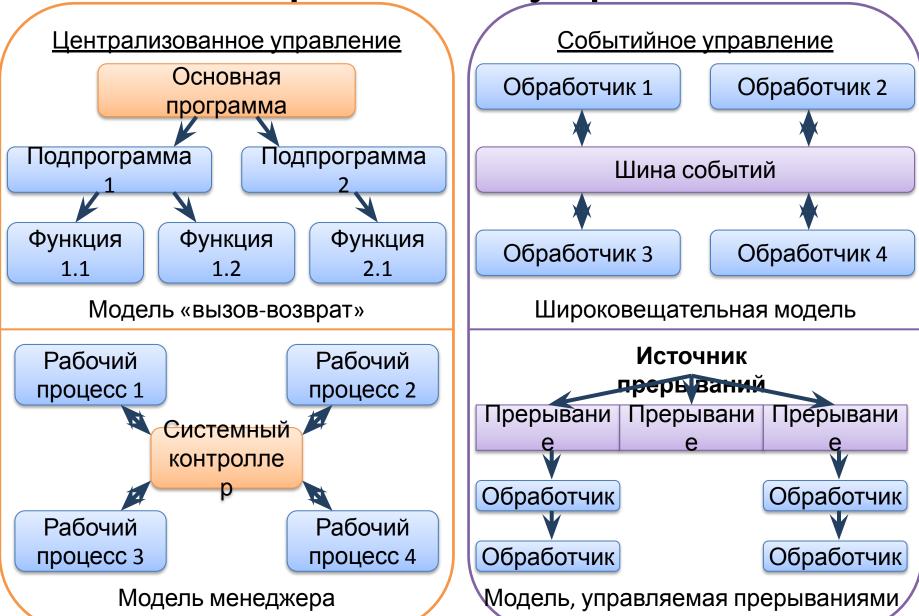
Достоинства

- Хорошо работает в пакетном режиме
- Очень проста

- Утилиты командной строки
- Некоторые сервисы (постоянно работающие программы)

Модель менеджера

Недостатки


- Имеет смысл только при параллельном выполнении нескольких процессов
- Проблемы «состояний гонки»

Достоинства

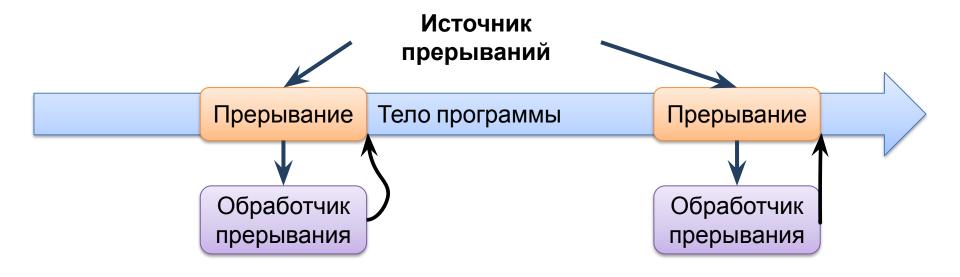
- Хорошо работает в приложениях массового обслуживания
- Сравнительно легко масштабируется

- Сетевые сервисы (серверная часть)
- Утилиты с графическим интерфейсом пользователя, выполняющие длительные действия

Моделирование управления

Широковещательная модель

Недостатки


• Сложные сценарии оказываются «размазаны» по множеству обработчиков событий

Достоинства

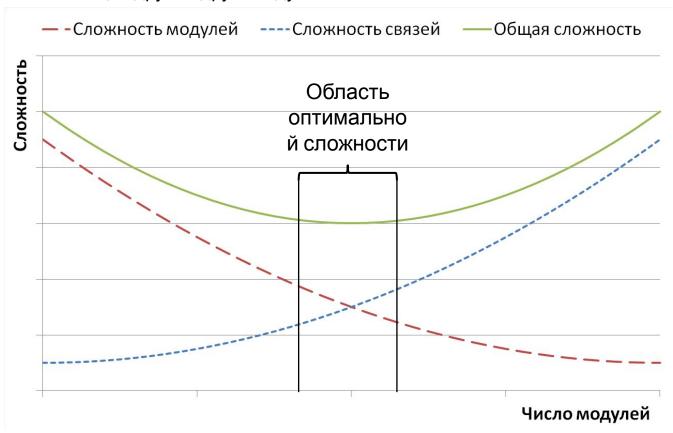
- Хорошо работает, когда нужно реагировать на заранее неизвестную последовательность входных событий
- Сравнительно легко расширяется

- Утилиты с графическим интерфейсом пользователя
- Асинхронные приложения, ориентированные на ввод/вывод

Модель, управляемая прерываниями

Недостатки

- Возможные конфликты одновременно пришедших прерываний
- Обработчик прерывания должен восстановить контекст выполнения по окончанию своей работы


Достоинства

• Позволяет разделить программу на низкоприоритетный «основной цикл» и обработчики важных событий

- Микроконтроллеры
- Встраиваемые системы

Модульность

Модульность — свойство системы, которая может подвергаться декомпозиции на ряд внутренне связанных и слабо зависящих друг от друга модулей.

Хороший модуль проще использовать, чем переписать заново.

Принцип информационной закрытости

Сущность

- Модули по возможности независимы друг от друга
- Доступ к содержимому модуля ограничен
- Модули обмениваются только той информацией,

Достоинства

- Параллельная разработка модулей системы разными коллективами разработчиков
- Упрощается модификация системы, реже сталкиваемся с «каскадом изменений»

Связность модуля

Функциональная

Информационная

Коммуникативная

Процедурная

Временная

Логическая

По совпадению

Алгоритм определения связности

Части модуля совместно решают одну проблему?

Да Функцио-<mark>нальная</mark>

Нет Части модуля связаны?

Да Как связаны части модуля?

По данным По упра Порядок важен? Порядок

По управлению Порядок важен?

Да Процедурная Части модуля входят в одну категорию действий?

Нет

Да Логическая **Нет** По совпадению

Да Информационная **Нет** Коммуни-кативная

Нет Временная

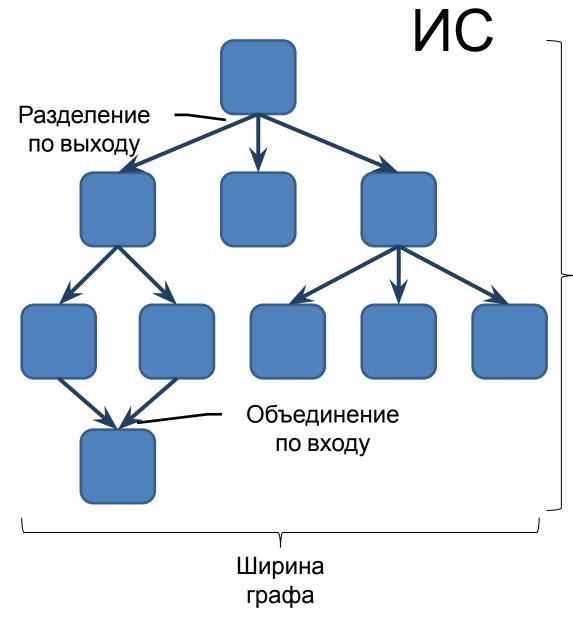
Правило параллельной цепи: если все действия модуля имеют несколько уровней связности, то модулю присваивают самый сильный из них.

Правило последовательной цепи: если действия в модуле имеют разные уровни связности, то модулю присваивают самый слабый из них.

Сцепление модулей

По данным

По образцу


По управлению

По внешним ссылкам

По общей области

По содержанию

Метрики сложности структуры

Число связей в полном

$$E_C = \frac{\text{fpace}}{2} N (N - 1)$$

Число связей в графе-

Высота графа

Невязка графа

$$Nev = \frac{E - E_T}{E_C - E_T} = \frac{2(E - N + 1)}{(N - 1)(N - 2)}$$