# Discrete Mathematics 

## Probability-II

## Adil M. Khan

## Professor of Computer Science

## Innopolis University

"The Consequences of an Act Affect the Probability of its Occurring Again!"

- B. F. Skinner -


## Recap

## 1. Why should we learn Probability?

2. Formulating questions in terms of probability
3. Building the probability model

Four-step Method
4. Uniform sample spaces

## 5. Counting

## Today's Objectives

## 1. Counting subsets of a set

2. Conditional Probability
3. Independence
4. Total Probability Theorem
5. Baye's theorem
6. Random variables

## Counting Subsets of a Set

$\binom{n}{k}=$ The number of k -element subsets of an n
element set.

Is read as "n choose k"

## Why Count Subsets of Set?

## $\square$ Example:

Suppose we select 5 cards at random from a deck of 52 cards.

What is the probability that we will end up having a full house?

Doing this using the possibility tree will take some effort.

## Counting Subsets of a Set

$$
\binom{n}{k}=?
$$

## Counting Subsets of a Set

$\binom{n}{k}=?$

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!


## Counting Subsets of a Set

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!

1. Pick an element one at a time

## Counting Subsets of a Set

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!

1. Pick an element one at a time

$$
n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

## Counting Subsets of a Set

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!

1. Pick an element one at a time

$$
n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

2. Choose $k$ elements and order them

## Counting Subsets of a Set

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!

1. Pick an element one at a time

$$
n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

2. Choose $k$ elements and order them

$$
\binom{n}{k} k!
$$

## Counting Subsets of a Set

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!

Thus

$$
\frac{n!}{(n-k)!}=\binom{n}{k} k!
$$

## Counting Subsets of a Set

- To solve for this, let's start by looking at two ways of constructing an ordered sequence of $k$ distinct items!
* Thus

$$
\frac{n!}{(n-k)!}=\binom{n}{k} k!
$$

Hence

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

## Conditional Probability

- An Interesting Kind of Probability Question
- "After this lecture, when I go to UI canteen for lunch, what is the probability that today they will be serving biryani (my favorite food)?


## Biryani ©



## Conditional Probability

- Of course, the vast majority of the food that the cafeteria prepares is NEITHER delicious NOR is it ever biryani (low probability).
- But they do cook dishes that contain rice, so now the question is "what's the probability that food from UI is delicious given that it contains rice?"
- This is called "Conditional Probability"


## Conditional Probability

- What is the probability that it will rain this afternoon, given that it is cloudy this morning?
- What is the probability that two rolled dice sum to 10 , given that both are odd?

Written as

- $\mathbf{P}(\mathbf{A} \mid \mathbf{B})$ - denotes the probability of event A , given that event $B$ happens.


## Conditional Probability

- So, how to answer the "Food Court" question?


## Conditional Probability

$$
P(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}
$$

## Why Do Tree Diagrams Work?

- We have solved multiple probability problems using tree diagrams
- Let's think for a moment about "why do tree diagrams work?"
- The answer involves conditional probabilities
- In fact, the probabilities that we have been recording on the edges of a tree diagram are conditional probabilities
- More generally, on each edge of a tree diagram, we record that the probability that the experiment proceeds along that part, given that it reaches the parent vertex


## Why Do Tree Diagrams Work?

Let's look the upper most edges of the probability tree for the previous example!


## Why Do Tree Diagrams Work?



$$
\mathrm{P}(W 1 W 2)=\mathrm{P}(W 1 \cap W 2)=\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}
$$

## Why Do Tree Diagrams Work?



```
P(win first game \cap win second game)
= P(win first game).P(win second game| win first game)
```


## Why Do Tree Diagrams Work?

Rule (Product Rule for 2 Events). If $\operatorname{Pr}\left[E_{1}\right] \neq 0$, then:

$$
\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]
$$

Rule (Product Rule for $n$ Events).

$$
\begin{gathered}
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap \ldots \cap E_{n}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right] \cdots \\
\cdot \operatorname{Pr}\left\lceil E_{n} \mid E_{1} \cap E_{2} \cap \ldots \cap E_{n-1}\right]
\end{gathered}
$$

provided that

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap \cdots \cap E_{n-1}\right] \neq 0 .
$$

"So the Product Rule is the formal justification for multiplying edge probabilities in a probability tree to get outcome probabilities"

## Independence

- Intuitively, two events A and B are independent if knowing that A happens does not affect the probability that B happens
- Thus

$$
P(B \mid A)=P(B)
$$

## Independence

$$
P(B \mid A)=P(B)
$$

- Now, we already know that

$$
P(B \cap A)=P(A) P(B \mid A)
$$

## Independence

$$
P(B \mid A)=P(B)
$$

- Now, we already know that

$$
P(B \cap A)=P(A) P(B \mid A)
$$

- Putting two together

$$
P(B \cap A)=P(A) P(B)
$$

## Independence

- Why use this definition instead of the intuitive one?

$$
P(B \cap A)=P(A) P(B)
$$

## Independence

- Why use this definition instead of the intuitive one?

$$
P(B \cap A)=P(A) P(B)
$$

Because it is symmetric in the roles of $A$ and $B$

## Independence

- Why use this definition instead of the intuitive one?

$$
P(B \cap A)=P(A) P(B)
$$

Because it is symmetric in the roles of $A$ and $B$

$$
\Rightarrow P(A \mid B)=P(A)
$$

## What Independence Really Means?

- Are these events independent?


$$
P(A)>0 \text { and } P(B)>0
$$

## What Independence Really Means?

- Thus being dependent is completely different from being disjoint!


## What Independence Really Means?

-Thus being dependent is completely different beino disinint!

- Two events are independent, if the occurrence of one does not change our belief about the occurrence of the other.


## What Independence Really Means?

- Thus being dependent being disjoint!
- Typically the case when the two events are determined by two physically distinct and non-interacting processes.
- Getting heads in a coin toss and snowing outside


## Independence---Cont.

- Generally, independence is an assumption that we assume when modeling a phenomenon.
- The reason we so-often assume statistical independence is not because of its real-world accuracy
- It is because of its armchair appeal: It makes the math easy

How does it do that?

- By splitting a compound probability into a product of individual probabilities.
(Note for TAs: Include example of Independence assumption in tutorials)


## Total Probability Theorem

- Take a look at the figure below



## Total Probability Theorem

- Take a look at the figure below


$$
P(B) ?
$$

## Total Probability Theorem

- Take a look at the figure below



## Total Probability Theorem

- Take a look at the figure below



## Total Probability Theorem

- Take a look at the figure below



## Total Probability Theorem

- Where do we use it?
* Baye's Theorem!


## Medical Testing Problem

- Let's assume a "not-so-perfect" test for a medical condition called BO suffered by $10 \%$ of the population
- The test is not-so-perfect because
- $90 \%$ of the tests come positive if you have BO
- $70 \%$ of the tests come negative if you don't have BO
- If we randomly test a person for BO, and if the test comes positive, what is the probability that the person has BO.


## Probability Tree

## A: The test came positive B: The person has BO

| person test result | outcome <br> probability |
| :---: | :---: |



BO is suffered by $10 \%$ of the population

If someone has BO, there is a $90 \%$ chance that the test will be positive

If someone does not have the condition, there is a $70 \%$ chance that the test will be negative.

## Probability Tree

A: The test is positive B: The person has BO

| person <br> has BO | test result | outcome <br> probability | event A: <br> has BO | event B: <br> tests <br> positive | event <br> A $\cap B$ |
| :---: | :---: | :---: | :---: | :---: | :---: |



$$
\begin{gathered}
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \\
P(B \mid A)=\frac{0.09}{0.09+0.27}=\frac{1}{4}
\end{gathered}
$$

## Conditional Probability Tree---Cont.

- Surprising, Right!
- So if the test comes out positive, the person has only $25 \%$ chance of having the diseases
- Conclusion:
- Tests are flawed
- Tests give test probabilities not the real probabilities


## Bayes Theorem

- How to correct for such Flawed Tests
- Bayes Theorem
- It lets you relate the test probabilities with the real probabilities.
- More specifically, it lets you relate $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$ with $P(B \mid A)$.
- What is $P(B \mid A)$ ?


## Bayes Theorem---Cont.

## A Posteriori Probabilities

- A conditional probability in reverse $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$ is called a posteriori probability.
- You can understand this by considering that event B precedes event A in time.


## Bayes Theorem---Cont.

- A Posteriori Probabilities
- For example:
- The probability that it was cloudy this morning, given that it rained in the afternoon.
- Mathematically speaking, there is no difference between a posteriori probability and a conditional probability.


## Flawed Test

## Coming Back to Flawed Test

## Let

A: The test came positive

B: Person has BO

## Flawed Test

- Then
- $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$ means the chance that indicator $\mathbf{A}$ (a person's test came positive) happened given that the event $\mathbf{B}$ occurred (the person has the disease).


## Flawed Test

- $\boldsymbol{P}(A \mid B)$ means the chance that indicator $\mathbf{A}$ (a person's test came positive) happened given that the event $\mathbf{B}$ occurred (the person has the disease).
- $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$ means the probability that event $\mathbf{B}$ (a person having disease) happened given the indicator $\mathbf{A}$ (the person's test came positive)


## Flawed Test

- $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$ means the chance that indicator $\mathbf{A}$ (a person's test came positive) happened given that the event $\mathbf{B}$ occurred (the person has the disease).
- $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$ means the probability that event $\mathbf{B}$ (a person having disease) happened given the indicator $\mathbf{A}$ (the person's test came positive)

$$
P(B \mid A)=\frac{P(A \mid B) \cdot \mathbf{P}(B)}{\mathbf{P}(A)}
$$

## Flawed Test

$$
\begin{gathered}
\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})=\frac{\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B}) \cdot \mathbf{P}(\boldsymbol{B})}{\mathbf{P}(\boldsymbol{A})} \\
P(\text { Has BO } \mid \text { Pos Test })=\frac{P(\text { Pos Test } \mid \text { Has BO })}{P(\text { Pos test })}
\end{gathered}
$$

## Random Variables

- So far, we focused on probabilities of events.
- For example,
- The probability that someone wins the Monty Hall Game
- The probability that someone has a rare medical condition given that he/she tests positive


## Random Variables

- But most often, we are interested in knowing more than this.
- For example,

How many players must play Monty Hall Game before one of them finally wins?

How long will a weather certain condition last?

How long will I loose gambling with a strange coin all night?

- To be able to answer such questions, we have to learn about "Random Variables"


## Random Variables---Cont.

- "Random Variables" are nothing but "functions"
- A random variable $R$ on a probability space is a function whose domain is the sample space and whose range is a set of Real numbers.


## Random Variables---Cont.

- "Random Variables" are nothing but "functions"
- A random variable $R$ on a probability space is a function whose domain is the sample space and whose range is a set of Real numbers.
- Let's look at this example!
- Tossing three independent coins and noting
- C : the number of heads that appear
- M: 1 if all are heads or tails, 0 otherwise
- If we look closely, we will see that C and M are in fact functions that map every outcome of the experiment to a number.


## Random Variables---Cont.

- Example ---Cont.
$S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$

$$
\begin{array}{rll}
C(H H H)=3 & C(T H H)=2 \\
C(H H T)=2 & C(T H T)=1 \\
C(H T H)=2 & C(T T H)=1 \\
C(H T T)=1 & C(T T T)=0 \\
M(H H H)=1 & M(T H H)=0 \\
M(H H T)=0 & M(T H T)=0 \\
M(H T H)=0 & M(T T H)=0 \\
M(H T T)=0 & M(T T T)=1
\end{array}
$$

- Thus $\mathbf{C}$ and $\mathbf{M}$ are random variables!


## Indicator Random Variables

- Maps every outcome to either 0 or 1 - its range is $\{0,1\}$ - indicates that a sample point has/hasn't a certain property
- M from our example: Partitions the sample space into two blocks
- Such random variables are called indicator random variables
$\underbrace{\text { HHH TTT }}_{M=1} \underbrace{\text { HHT HTH HTT THH THT TTH }}_{M=0}$


## Random Variables and Events

- General random variables partition the sample space into several blocks).
- Note that $\mathbf{C}$ from our previous example is a general random variable

$$
\underbrace{T T T}_{C=0} \underbrace{\text { TTH THT HTT }}_{C=1} \underbrace{\text { THH HTH HHT }}_{C=2} \underbrace{H H H}_{C=3}
$$

- Notice that each sample in the block has the same value for the random variable
- An equation or an inequality involving a random variable can be regarded as an event.


## Random Variables and Events---Cont.

- For example

$$
\begin{aligned}
& P(C=2)=P(H H T, H T H, H H T) \\
= & P(T H H)+P(H T H)+P(H H T)
\end{aligned}
$$

## Random Variables.

- More generally, an event can be defined as

$$
\{w \mid R(w)=x\} \text { is the event that } R=x
$$

- And its probability can be defined as

$$
\mathrm{P}(R=x)=\sum^{w \mid R(w)=x} \mathrm{P}(w)
$$

- A random variable could be continuous or discrete
- When dealing with continuous random variables, use "integrals" instead of "summations"


## Expected Value

- Weighted average of the values of a random variable
- Provides a central point for the distribution of the values of a random variable
- We can solve many problems using the notion of expected values

How many heads are expected to appear if a coin is tossed 100 times?

What is the expected number of comparisons used to find an element in a list using the linear search?

## Expected Value---Cont.

$$
E x[R]::=\sum_{w \in S} R(w) \operatorname{Pr}[w]
$$

## Expected Value---Cont.

$$
E x[R]::=\sum_{w \in S} R(w) \operatorname{Pr}[w]
$$

- For example, the expected value of a random variable with uniform distribution on $\{\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}\}$ is

$$
E x\left[R_{n}\right]=\sum_{i=1}^{n} i \cdot \frac{1}{n}=\frac{n(n+1)}{2 n}=\frac{n+1}{2}
$$

## Variance

Consider the following two gambling games:

Game A: You win $\$ 2$ with probability $2 / 3$ and lose $\$ 1$ with probability $1 / 3$.

Game B: You win $\$ 1002$ with probability $2=3$ and lose $\$ 2001$ with probabil- ity $1=3$.

- Which game would you play?


## Variance

Let's compute the expected return for both games:

## Variance

Game A: You win $\$ 2$ with probability $2 / 3$ and lose $\$ 1$ with probability $1 / 3$.

$$
\operatorname{Ex}[A]=2 \cdot \frac{2}{3}+(-1) \cdot \frac{1}{3}=1
$$

## Variance

Game B: You win $\$ 1002$ with probability $2=3$ and lose $\$ 2001$ with probabil- ity $1=3$.

$$
E x[B]=1002 \cdot \frac{2}{3}+(-2001) \cdot \frac{1}{3}=1
$$

Expected return is the same. Thus expected value is not enough to make the decision

## Variance

The variance $\operatorname{Var}[\mathrm{R}]$ of a random variable R is

$$
\operatorname{Var}[R]=\operatorname{Ex}\left[(R-E x[R])^{2}\right]
$$

## Variance

Game A: You win $\$ 2$ with probability $2 / 3$ and lose $\$ 1$ with probability $1 / 3$.

$$
\begin{aligned}
A-\operatorname{Ex}[A] & = \begin{cases}1 & \text { with probability } \frac{2}{3} \\
-2 & \text { with probability } \frac{1}{3}\end{cases} \\
(A-\operatorname{Ex}[A])^{2} & = \begin{cases}1 & \text { with probability } \frac{2}{3} \\
4 & \text { with probability } \frac{1}{3}\end{cases} \\
\operatorname{Ex}\left[(A-\operatorname{Ex}[A])^{2}\right] & =1 \cdot \frac{2}{3}+4 \cdot \frac{1}{3} \\
\operatorname{Var}[A] & =2 .
\end{aligned}
$$

## Variance

For game B

$$
\begin{aligned}
& B-\operatorname{Ex}[B]= \begin{cases}1001 & \text { with probability } \frac{2}{3} \\
-2002 & \text { with probability } \frac{1}{3}\end{cases} \\
& (B-\operatorname{Ex}[B])^{2}= \begin{cases}1,002,001 & \text { with probability } \frac{2}{3} \\
4,008,004 & \text { with probability } \frac{1}{3}\end{cases} \\
& \operatorname{Ex}\left[(B-\operatorname{Ex}[B])^{2}\right]=1,002,001 \cdot \frac{2}{3}+4,008,004 \cdot \frac{1}{3} \\
& \operatorname{Var}[B]=2,004,002 .
\end{aligned}
$$

- Intuitively, this means that the payoff in Game A is usually close to the expected value of $\$ 1$, but the payoff in Game B can deviate very far from this expected value - high variance means high risk.


## Standard Deviation

- Because of its definition in terms of the square of a random variable, the variance of a random variable may be very far from a typical deviation from the mean.


## Standard Deviation

- For example, in Game B above, the deviation from the mean is 1001 in one outcome and -2002 in the other. But the variance is a whopping 2,004,002
- The problem is with the "units" of variance.
- If a random variable is in dollars, then the expected value is also in dollars, but the variance is in square dollars


## Standard Deviation

- For this reason, standard deviation is often used to describe the deviation of a random variable from its expected value

$$
\sigma_{R}=\sqrt{\operatorname{Var}[R]}=\sqrt{\operatorname{Ex[(R-Ex[R])^{2}]}}
$$

- For example, the standard deviation for games A and B are

$$
\begin{gathered}
\sigma_{A}=\sqrt{\operatorname{Var}[A]}=\sqrt{2} \approx 1.41 \\
\sigma_{B}=\sqrt{\operatorname{Var}[B]}=\sqrt{2,004,002} \approx 1416
\end{gathered}
$$

Why bother squaring in the first place?

