

Рис.1. Внешний вид интерференционных фильтров

Рис.2. Конструкция интерференционного фильтра: 1 – защитный слой, 2 – резонансные слои, 3 – подложка

Оптические покрытия проектируются и изготавливаются на стеклянных и полупроводниковых подложках с использованием пленкообразующих материалов:

- тугоплавкие окислы: ZrO_2 , TiO_2 , SiO_2 , Y_2O_3 и др. халькогениды: PbTe, GeTe, Sb_2S_3 , ZnS, ZnSe, $AsSe_4$, As_2Se_3 и др.
- фториды: MgF₂, PbF₂, BaF₂, SrF₂.
- полупроводниковые материалы: Si и Ge.

Рис.3. Классификация интерференционных фильтров по виду спектральной характеристики: а) просветляющие, б) пропускающие, в) полосовые, г) блокирующие коротковолновые, д) блокирующие длинноволновые

Области применения многослойных оптических покрытий (интерференционных фильтров):

1) В лазерной технике: в качестве глухих и полупрозрачных зеркал резонаторов.

2) В оптической технике: в качестве делителей пучка, интерференционных поляризаторов.

3) В лидарной технике: в качестве узкополосных пропускающих фильтров для подавления оптического фона и улучшения соотношения сигнал/шум.

4) В измерительной технике: для контроля угловых и линейных перемещений механизмов.

Матричный метод расчета многослойного тонкопленочного покрытия:

$$\begin{split} \varphi_1 &= \frac{2\pi}{\lambda} n_1 h_1 - \phi \text{азовая толщина 1-го слоя,} \\ \varphi_2 &= \frac{2\pi}{\lambda} n_2 h_2 - \phi \text{азовая толщина 2-го слоя,} \\ M_1 &= \begin{pmatrix} \cos(\varphi_1) & \frac{i}{n_1} \sin(\varphi_1) \\ in_1 \sin(\varphi_1) & \cos(\varphi_1) \end{pmatrix} - \text{матрица преобразования 1-го слоя,} \\ M_2 &= \begin{pmatrix} \cos(\varphi_2) & \frac{i}{n_2} \sin(\varphi_2) \\ in_2 \sin(\varphi_2) & \cos(\varphi_2) \end{pmatrix} - \text{матрица преобразования 2-го слоя,} \\ M &= M_1 M_2 M_1 \dots M_2 = \begin{pmatrix} m_{11} & im_{12} \\ im_{21} & m_{22} \end{pmatrix} - \text{матрица преобразования покрытия,} \\ r &= \frac{n_0 m_{11} + in_0 n_m m_{12} - im_{21} - n_m m_{22}}{n_0 m_{11} + in_0 n_m m_{12} + im_{21} + n_m m_{22}} - \text{амплитудный коэффициент отражения,} \\ t &= \frac{2n_0}{n_0 m_{11} + in_0 n_m m_{12} + im_{21} + n_m m_{22}} - \text{амплитудный коэффициент пропускания,} \\ R(\lambda) &= |r|^2 \cdot \left(|r|^2 + \frac{n_m}{n_0} \cdot |t|^2 \right)^{-1} - \text{спектральное отражение покрытия по интенсивности.} \end{split}$$

Моделирование спектра отражения широкополосного отражающего МТП, состоящего из чередующихся четвертьволновых слоев SiO₂ / TiO₂ с толщинами $h_1 = \lambda_{max}/(4n_1)$ и $h_2 = \lambda_{max}/(4n_2)$:

Выводы:

1) Максимальный коэффициент отражения наблюдается на длине волны $\lambda_{max} = h_1/(4n_1) = h_2/(4n_2)$. 2) Увеличение количества слоев приводит к повышению коэффициента отражения в максимуме и уменьшению спектральной ширины характеристики $\Delta \lambda_{0.5}$ (FWHM).

3) Рассмотренная математическая модель не учитывает наклонного падения излучения, диаграмму направленности источника излучения, поляризации падающего излучения.

Моделирование спектра пропускания широкополосного пропускающего / блокирующего МТП, состоящего из чередующихся слоев SiO₂ / TiO₂ с толщинами $h_1 = \lambda_{max}/(4n_1)$ и $h_2 = \lambda_{max}/(2n_2)$:

Рис.6. Расчет спектрального пропускания $T(\lambda)$ для 10 слоев SiO₂ / TiO₂ с показателями преломления $n_0=1, n_1=1.45, n_2=2.40, n_m=1.45$

Рис.7. Расчет спектрального пропускания $T(\lambda)$ для 16 слоев SiO₂ / TiO₂ с показателями преломления $n_0=1, n_1=1.45, n_2=2.40, n_m=1.45$

Выводы:

1) Максимальный коэффициент пропускания наблюдается на нескольких длинах волн.

 Увеличение количества слоев с каждой стороны центрального полуволнового слоя повышает коэффициент отражения в максимуме и уменьшает спектральную ширину характеристики Δλ_{0,5} (FWHM)..
Покрытие можно классифицировать как отрезающее или просветляющее на нескольких длинах волн.
Покрытие является широкополосным просветляющим при условии T(λ)>T_{нач} в рабочем диапазоне.

Моделирование спектра пропускания узкополосного пропускающего МТП, состоящего из чередующихся слоев SiO₂ / TiO₂ с толщинами $h_1 = \lambda_{max}/(4n_1)$ и $h_2 = \lambda_{max}/(4n_2)$ и центрального слоя SiO₂ толщиной $h_2 = \lambda_{max}/(2n_1)$:

Рис.8. Расчет спектрального пропускания $T(\lambda)$ для 4 слоев SiO₂ / TiO₂ с каждой стороны от полуволнового центрального слоя SiO₂

Рис.9. Расчет спектрального пропускания $T(\lambda)$ для 8 слоев SiO₂ / TiO₂ с каждой стороны от полуволнового центрального слоя SiO₂

Выводы:

- 1) Максимальный коэффициент пропускания наблюдается на длине волны $\lambda_{max} = h_3/(2n_3)$.
- 2) Увеличение количества слоев приводит к увеличению наклона характеристики, %/нм, на ее краях.
- 3) Рассмотренная математическая модель не учитывает наклонного падения излучения, диаграмму направленности источника излучения, поляризации падающего излучения.

Моделирование спектра пропускания узкополосного пропускающего МТП, состоящего из чередующихся слоев SiO₂ / TiO₂ с толщинами $h_1 = \lambda_{max}/(4n_1)$ и $h_2 = \lambda_{max}/(4n_2)$ и центрального слоя SiO₂ толщиной $h_3 = \lambda_{max}/(2n_1)$:

Рис.10. Спектр пропускания $T(\lambda)$ покрытия вида НВНВНВ-2Н-ВНВНВНВН при номинальной толщине слоев (красный) и погрешности $\Delta h_1 = \Delta h_2 = \Delta h_3 = +1\%$ (синий)

Рис.11. Спектр пропускания T(λ) покрытия вида НВНВНВ-2H-ВНВНВНВН при номинальной толщине слоев (красный) и погрешности Δh₃=+1% (синий)

Выводы:

1) Погрешность изготовления толщин всех слоев покрытия приводит к смещению резонансной длины волны, имеющему тот же знак, что и погрешность.

2) Спектр пропускания покрытия зависит от распределения погрешностей изготовления четвертьволновых и полуволнового слоев и может быть частично скомпенсирован в процессе изготовления.

Матричный метод расчета многослойного тонкопленочного покрытия, учитывающий поляризацию и угол падения оптического излучения (на примере покрытия HB..HB-2H-BH..BH):

 $n_{1s} = n_1 \cos(\alpha_1)$ $n_{2s} = n_2 \cos(\alpha_2)$ - показатели преломления для s-поляризации,

 $n_{1p} = n_1 / \cos(\alpha_1)$ $n_{2p} = n_2 / \cos(\alpha_2)$ - показатели преломления для р-поляризации,

$$\alpha_1 = \arccos\left(\sqrt{1 - \frac{n_0^2}{n_1^2}\sin^2(\alpha_0)}\right) \quad \alpha_2 = \arccos\left(\sqrt{1 - \frac{n_0^2}{n_2^2}\sin^2(\alpha_0)}\right) - \text{ углы преломления в слое H и B},$$

$$\varphi_{1s} = \frac{2\pi}{\lambda} n_1 h_1 \cos(\alpha_1) \quad \varphi_{2s} = \frac{2\pi}{\lambda} n_2 h_2 \cos(\alpha_2) \quad \varphi_{12s} = \frac{2\pi}{\lambda} n_1 h_{12} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{12} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{12} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_2 \cos(\alpha_2) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_3 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_3 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_2 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_2 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_3 = \frac{2\pi}{\lambda} n_1 h_{13} \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_2 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_3 = \frac{2\pi}{\lambda} n_1 h_2 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_3 = \frac{2\pi}{\lambda} n_1 h_2 \cos(\alpha_1) - \varphi_{33} = \frac{2\pi}{\lambda} n_2 h_3 = \frac{2\pi}{\lambda} n_2 h_3 = \frac{2\pi}{\lambda} n_1 h_2 \cos(\alpha_1) - \frac{2\pi}{\lambda} n_2 h_3 = \frac{2\pi}$$

$$M_{1s} = \begin{pmatrix} \cos(\varphi_{1s}) & \frac{i}{n_{1s}} \sin(\varphi_{1s}) \\ in_{1s} \sin(\varphi_{1s}) & \cos(\varphi_{1s}) \end{pmatrix}$$
 - матрица преобразования слоя H ($\lambda/4$, SiO₂),

$$\begin{split} M_{2s} = & \begin{pmatrix} \cos(\varphi_{2s}) & \frac{i}{n_{2s}} \sin(\varphi_{2s}) \\ in_{2s} \sin(\varphi_{2s}) & \cos(\varphi_{2s}) \end{pmatrix} \text{- матрица преобразования слоя B (λ/4, TiO}_2$), \\ M_{12s} = & \begin{pmatrix} \cos(\varphi_{12s}) & \frac{i}{n_{1s}} \sin(\varphi_{12s}) \\ in_{1s} \sin(\varphi_{12s}) & \cos(\varphi_{12s}) \end{pmatrix} \text{- матрица преобразования слоя 2H (λ/2, SiO}_2$), \end{split}$$

Матричный метод расчета многослойного тонкопленочного покрытия, учитывающий поляризацию и угол падения оптического излучения (на примере покрытия HB..HB-2H-BH..BH):

$$\begin{split} M_s &= M_{1s} M_{2s} M_{1s} \dots M_{2s} M_{12s} M_{2s} \dots M_{1s} M_{2s} M_{1s} = \begin{pmatrix} m_{11s} & im_{12s} \\ im_{21s} & m_{22s} \end{pmatrix} \quad \text{-матрица преобразования покрытия} \\ \pi_s &= \frac{n_0 m_{11s} + in_0 n_m m_{12s} - im_{21s} - n_m m_{22s}}{n_0 m_{11s} + in_0 n_m m_{12s} + im_{21s} + n_m m_{22s}} \quad \text{- амплитудный коэффициент отражения s-поляризации,} \\ t_s &= \frac{2n_0}{n_0 m_{11s} + in_0 n_m m_{12s} + im_{21s} + n_m m_{22s}} \quad \text{- амплитудный коэффициент пропускания s-поляризации,} \\ T_s(\lambda) &= 1 - \frac{|r_s|^2}{|r_s|^2 + \frac{n_m}{n_0} \cdot |t_s|^2} \quad \text{- спектральное пропускание покрытия для s-поляризации по интенсивности,} \\ M_p &= M_{1p} M_{2p} M_{1p} \dots M_{2p} M_{12p} M_{2p} \dots M_{1p} M_{2p} M_{1p} = \begin{pmatrix} m_{11p} & im_{12p} \\ im_{21p} & m_{22p} \end{pmatrix} \quad \text{- матрица преобразования покрытия} \\ \eta_{11p} + in_0 n_m m_{12p} - im_{21p} - n_m m_{22p} \\ \pi_p &= \frac{n_0 m_{11p} + in_0 n_m m_{12p} - im_{21p} - n_m m_{22p}}{n_0 m_{11p} + im_0 n_m m_{12p} + im_{21p} + n_m m_{22p}} \quad \text{- амплитудный коэффициент отражения p-поляризации,} \\ t_p &= \frac{2n_0}{n_0 m_{11p} + in_0 n_m m_{12p} - im_{21p} - n_m m_{22p}} \\ - \alpha m_{11p} m_{12p} - im_{21p} - n_m m_{22p} \\ - \alpha m_{11p} m_{11p} + im_{0n} m_{12p} + im_{21p} + n_m m_{22p} \\ - \alpha m_{11p} m_{12p} - im_{21p} - n_m m_{22p} \\ - \alpha m_{11p} m_{12p} m_{12p} - m_{12p} m_{12p} + m_{12p} + n_m m_{22p} \\ - \alpha m_{11p} m_{11p} m_{10n} m_{12p} + im_{21p} + n_m m_{22p} \\ - \alpha m_{11p} m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} + m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} m_{12p} \\ - \alpha m_{11p} m_{12p} m_{12$$

Моделирование спектра пропускания узкополосного пропускающего МТП, состоящего из чередующихся слоев SiO₂ / TiO₂ с толщинами $h_1 = \lambda_{max}/(4n_1)$ и $h_2 = \lambda_{max}/(4n_2)$ и центрального слоя SiO₂ толщиной $h_2 = \lambda_{max}/(2n_1)$:

Рис.12. Спектр пропускания T(λ) при угле падения 15° для покрытия HBHBHBHB-2H-BHBHBHBH: красный – s-поляризация, синий – s-поляризация

Рис.13. Спектр пропускания T(λ) при угле падения 30° для покрытия HBHBHBHB-2H-BHBHBHBH: красный – s-поляризация, синий – p-поляризация

Выводы:

 Увеличение угла падения вызывает коротковолновое смещение центральной длины волны пропускания.
При наклонном падении спектры пропускания р- и s-компонент смещаются на различное расстояние, кроме того наблюдается уширение спектра пропускания p-компоненты по сравнению с s-поляризацией.

Рис.14. Автоматизированный спектрометр-монохроматор S41 ЗАО «Солар-ЛС» (Беларусь)

Рис.16.Стойка ОЕМ спектрометров S202 ЗАО «Солар-ЛС» (Беларусь)

Рис.15. Оптическая схема спектрометра S41

Достоинства моделей S41, S202:

1) Малые масса и габариты.

- 2) Малое энергопотребление (питание по USB).
- 3) Отсутствие подвижных частей.

4) Возможность использования в переносных и мобильных устройствах и комплексах.

5) Возможность получения высокого разрешения при ограничении спектрального диапазона и использовании решеток высоких порядков.

6) Возможность работы в широком спектральном диапазоне за счет снижения разрешения и использования решеток низких порядков.

Рис.17. Автоматизированный спектрометр-монохроматор М266 ЗАО «Солар-ЛС» (Беларусь)

Рис.18. Оптическая схема Черни-Тернера

Рис.19. Двойной спектрометрмонохроматор MSA130 ЗАО «Солар-ЛС» (Беларусь)

Рис.20. Оптическая схема монохроматора MSA-130

Достоинства моделей М266, MSA130:

1) Улучшенное спектральное разрешение - за счет увеличения фокусного расстояния объектива по сравнению с компактными спектрометрами, использования нескольких дифракционных решеток.

2) Удобство работы - за счет автоматической установки предварительных фильтров, дифракционных решеток, ширины входной щели.

3) Универсальность прибора - за счет возможности изменения режима сложения / вычитания дисперсии (в монохроматоре MSA130).

4) Универсальность прибора – за счет наличия двух выходных щелей, каждая из которых может комплектоваться своей матрицей или соединять приборы последовательно (в спектрометре М266).

5) Модульность – за счет возможности подключения внешней оптической схемы, учитывающей особенности исследуемых материалов / оптических элементов.

6) Наличие imaging версии приборов – возможность получения многоканальных спектров при использовании двумерной ПЗС-матрицы с компенсатором астигматизма.

Рис.21. Спектрометр ANDOR Shamrock 750

Step 4. 2nd output port Side output configuration Direct output Step 2. Resolution & band-pass Step 1. Chassis configuration Direct input Side input Step 3. Input light coupling interfaces

> Рис.22. Оптическая схема ANDOR Shamrock 750

Рис.23. ПЗС-линейка с вакуумированием и глубоким охлаждением до -100 °С

Рис.24. Двумерная ПЗС-матрица с охлаждением до -55 °C

Рис.25. Лабораторный спектрофотометр Shimadzu UV2450

Рис.26. Дифракционная решетка с участками различного периода

Item	Description	
Setting wavelength range	190 ~ 1100nm	
Measurement wavelength range	190 ~ 900nm (up to 1100nm with special detector)	
Wavelength accuracy	±0.3nm with auto wavelength correction included	
Wavelength repeatability	±0.1nm	
Wavelength scanning speed	Wavelength slew rate: about 3200nm/min Wavelength scan rate: about 900 ~ 160nm/min Monitor scan rate: about 2500nm/min	
Wavelength setting	At 1nm units for scan start and scan end wavelengths, and 0.1nm units for other wavelengths	
Lamp interchange wavelength	Auto switching synchronized with wavelength, switching range selectable between 282 ~ 393nm (0.1nm units)	
Spectral bandwidth	6-step switching among 0.1/0.2/0.5/1/2/5nm	
Response	Optimum response speed automatically set depending on bandwidth, minimum 0.1sec	
Resolution	0.1nm	
Stray light	UV-2450 UV-2550	
	Less than 0.015% Less than 0.0003% (220nm, Nal 10g/L solution) Less than 0.015% Less than 0.0003% (340nm, UV-39 filter)	
Photometric system	Double-beam, direct-ratio system with dynode feedback	
Photometric modes	Absorbance (Abs.), transmittance (%), reflectance (%), energy (E)	
Photometric range	Absorbance: -4 ~ 5 Abs	
	Transmittance, reflectance: 0.0 ~ 999.9%	
Recording range	Absorbance: -9.999 ~ 9.999 Abs	
	Transmittance, reflectance: -999.9 ~ 999.9%	
Photometric accuracy	±0.002 Abs (0 ~ 0.5 Abs) ±0.004 Abs (0.5 ~ 1.0 Abs) ±0.3%T (0 ~ 100% T) filter	

Рис.27. Держатель кювет для спектрофотометра

Рис.28. Устройство задания температуры кювет

Рис.29. Устройство перемещения и задания температуры кювет

Рис.30. Приставка измерения отражения для спектрофотометра

Рис.31. Устройство автоматической установки кювет

Рис.32. Приставка измерения отражения рассеивающих образцов

Рис.33. Лабораторный спектрофотометр Shimadzu IRPrestige-21

Рис.34. Оптическая схема Shimadzu IRPrestige-21

Рис.35. Смена фотоприемников Shimadzu IRPrestige-21

Рис.36. Смена источников излучения Shimadzu IRPrestige-21

Interferometer	Michelson interferometer (30 degree incident angle)
	Advanced Dynamic Alignment system (Patent pending)
	Sealed and desiccated interferometer with an automatic dryer (Patent pending)
Optical system	Single beam optics
Beam splitter	Germanium-coated KBr plate for Middle IR (Standard)
	Germanium-coated CsI plate for Middle/Far IR (Optional)
	Silicon-coated CaF2 plate for Near IR (Optional)
Light source	Air-cooled ceramic for Middle/Far IR with 3 years guaranteed (Standard)
	Tungsten lamp for Near IR (Optional)
Detector	DLATGS detector with temperature control for Middle/Far IR (Standard)
	MCT (Hg-Cd-Te) detector with liquid nitrogen cooling for Middle IR (Optional)
	InGaAs detector for Near IR (Optional)
Wavenumber range	7,800 - 350 cm ⁻¹
	12,500 - 240 cm ⁻¹ (Optional. See figure for detail)
Resolution	0.5 cm ⁻¹ , 1 cm ⁻¹ , 2 cm ⁻¹ , 4 cm ⁻¹ , 8 cm ⁻¹ , 16 cm ⁻¹ (Middle/Far IR)
	2 cm ⁻¹ , 4 cm ⁻¹ , 8 cm ⁻¹ , 16 cm ⁻¹ (Near IR)
S/N ratio	40,000: 1 or higher
	(4 cm ⁻¹ resolution, 1-minute accumulation, around 2,100 cm ⁻¹ , peak-to-peak)
Mirror speed	3-step selection of 2.8, 5, or 9 mm/sec
	Scanning at 4 cm ⁻¹ takes from 2-3 sec
Data sampling	He-Ne laser with 30 months guaranteed
Gain control	Automatic or manual from x1 - x128
Sample compartment	Automatic accessory recognition
	200 (W) x 230 (L) x 170 (H) mm
	Center Focus
Dimensions	600 (W) x 680 (L) x 290 (H) mm
Weight	54kg

Рис.37. Технические характеристики Shimadzu IRPrestige-21

Рис.38. Приставка измерения спектров отражения и пропускания рассеивающих образцов

Рис.39. Приставка измерения спектров отражения плоских зеркальных образцов

Рис.40. Приставка измерения спектров поглощения отражения плоских зеркальных образцов

Рис.41. Автоматизированная приставка

измерения спектров отражения и

пропускания рассеивающих образцов

Рис.42. Автоматизированная Риприставка для измерения спектров прист пропускания вар1

Рис.43. Автоматизированная приставка для измерения спектров пропускания вар2

Критерии выбора спектрометра / спектрофотометра:

1) Функциональность (измерение пропускания, отражения, поглощения, рассеяния, работа с твердыми, жидкими, газообразными образцами и др.)

2) Регистрируемы спектральный диапазон и спектральное разрешение.

- 3) Особенности оптической схемы прибора:
- углы падения луча,
- поляризация излучения,
- наличие одного или двух лучей.
- 4) Особенности системы управления:
- средства автоматизации измерений,
- встроенная калибровка и настройка,
- встроенная система диагностики.

5) Особенности фотоприемной части:

- вид фотоприемника (фотодиод, ПЗС-матрица, ФЭУ и др.),
- наличие нескольких фотоприемников,
- автоматическая смена фотоприемников,
- наличие нескольких оптических выходов прибора,
- совмещение с оптическим микроскопом.
- 6) Особенности излучающей части:
- вид излучателя (лампа накаливания, керма. штифт и др.),
- наличие юстирующего луча,
- наличие сменной оптики для работы в поддиапазонах.

Список использованных источников:

1) Путилин, Э.С. Оптические покрытия: учебное пособие [Текст] / Э.С.Путилин. – СПб: СПбГУ ИТМО, 2005. – 197 с.

2) Фурман, Ш.А. Тонкослойные оптические покрытия [Текст] / Ш.А.Фурман. – Л.: Машиностроение, 1977. – 264 с.

3) Мешков, Б.Б. Проектирование интерференционных покрытий [Текст] / П.П.Яковлев, Б.Б.Мешков. - М.: Машиностроение, 1987. – 185 с.

4) Котликов, Е.Н. Проектирование, изготовление и исследование интерференционных покрытий: учебное пособие [Текст] / Е.Н.Котликов, Г.А.Варфоломеев, Н.П.Лавровская и др. - СПб: ГУАП, 2010. – 188 с.

5) Крылова, Т.Н. Интерференционные покрытия [Текст] / Т.Н.Крылова. – Л.: Машиностроение, 1973. – 224 с.

6) Тарасов, К.И. Спектральные приборы [Текст] / К.И.Тарасов. - Л.: Машиностроение, 1977. - 368 с.

7) Интернет-сайты производителей спектральной аппаратуры: ЗАО «Солар-ЛС», «Авеста-Проект», ОКБ «Спектр», Shimadzu, Andor, Bruker.

Благодарю за внимание