Climate tipping as a noisy bifurcation: a predictive technique - J Michael T Thompson (DAMTP, Cambridge) - Jan Sieber (Maths, Portsmouth) Part I (JMTT) Bifurcations and their precursors Part II (JS) Normal form estimates #### **Dynamical System** Control μ Response x - Stable (type 1 response) - Stable (type 2 response) - Unstable (type 1 response) - Unstable (type 2 response) ## Instantaneous Basin loss at a Fold ## Introduction - Focus on the Earth, or a relevant sub-system (Lenton). - Regard it as a nonlinear dissipative dynamical system. - Ignore discontinuities and memory effects. - We have a large but finite set of ODEs and phase space. - This large complex system has activity at many scales. #### **Effective Noise** Small fast action is noise to the overall dynamics (OD) Models of the OD might need added random noise Bifurcations of the OD may underlie climate tipping #### **Control Parameters** We may have many slowly-varying control parameters, μ_i But they can subsumed into a single μ (eg. slow time) This limits the relevant bifurcations to those with co-dimension (*CD*) = 1 We now explain the co-dimension concept, before moving on to classify the *CD* = 1 bifurcations ## Unfolding Euler's Ditchfork A real column has imperfections. With P it does not reach pitchfork, C. Catastrophe Theory shows that only one extra control is needed to hit C. One such control is the side load, R. R = R* cancels out the imperfections. Needing 2 controls to be observable we say a pitchfork has co-dimension 2. A climate tip from a single slow evolution must be co-dimension 1. # Co-Dimension 1 Bifurcations (we shall be listing all 18) Bifurcations can be classified as: - (a) Safe Bifurcations - (b) Explosive Bifurcations - (c) Dangerous Bifurcations Safe and dangerous forms of the Hopf bifurcation click Super-critical (safe, no jump from P^c): Attracting oscillation (periodic attractor) Load, PPoint attractor Repellor **Sub–critical** (dangerous, jump from P^{C}): #### (a) Safe Bifurcations #### (a.1) Local Supercritical Bifurcations - 1. Supercritical Hopf Point to cycle - 2. Supercritical Neimark Cycle to torus - 3. Supercritical Flip Cycle to cycle #### (a.2) Global Bifurcations 4. Band Merging Chaos Chaos to chaos SAFE: no fast jump or enlargement of the attracting set **DETERMINATE:** single outcome even with small noise NO HYSTERESIS: path retraced on reversal of control sweep NO BASIN CHANGE: basin boundary remote from attractors NO INTERMITTENCY: in the responses of the attractors Chaos to chaos CATASTROPHIC: global events, abrupt enlargement of attracting set EXPLOSIVE: enlargement, but no jump to remote attractor DETERMINATE: with single outcome even with small noise NO HYSTERESIS: paths retraced on reversal of control sweep NO BASIN CHANGE: basin boundary remote from attractors INTERMITTENCY: lingering in old domain, flashes through the new 10. Chaotic-Saddle Explosion ## Example of an Explosive Event Flow-explosion transforms point attractor to a cycle Equilibrium path has a regular saddle-node fold. Saddle outset flows around a closed loop to the node. A stable cycle is created. Initial period is infinite (critical slowing). Precursor: same as static fold. #### (c) Dangerous Bifurcations CATASTROPHIC: blue-sky disappearance of attractor DANGEROUS: sudden jump to new attractor (of any type) INDETERMINACY: outcome can depend on global topology HYSTERESIS: path not reinstated on control reversal BASIN: tends to zero (c.2), attractor hits edge of residual basin (c.1, c.3) NO INTERMITTENCY: but critical slowing in global events ## BASINS (1) #### (a) With NO HYSTERESIS and REMOTE BASIN BOUNDARIES ## BASINS (2) ## (b) With HYSTERESIS, blue-sky JUMPS and SHRINKING BASINS Dangerous Bifurcations Subcritical: Hopf Flip Neimark Pitchfork (2 μ) Folds: Static Cyclic #### Precursors of our 18 bifurcations | Precursors of codimension-one bifurcations (local decay rate of transients -> 0) | | | |---|---|--| | Supercritical Hopf Supercritical Neimark Supercritical flip Band merging | S: point to cycle S: cycle to torus S: cycle to cycle S: chaos to chaos | linearly with control linearly with control linearly with control lingers near impinging boundary | | Flow explosion Map explosion Intermittency expl: flow Intermittency expl: map Regular interior crisis Chaotic interior crisis | E: point to cycle E: cycle to torus E: point to chaos E: cycle to chaos E: chaos to chaos E: chaos to chaos | linearly along folding path linearly along folding path linearly with control as for trigger (fold, flip, Neimark) lingers near impinging saddle lingers near impinging saddle | | Static fold Cyclic fold Subcritical Hopf Subcritical Neimark Subcritical flip Saddle connection Regular exterior crisis Chaotic exterior crisis | D: from point D: from cycle D: from point D: from cycle D: from cycle D: from cycle D: from cycle D: from chaos D: from chaos | linearly along folding path linearly along folding path linearly with control linearly with control linearly with control period of cycle tends to infinity lingers near impinging saddle lingers near impinging saddle | #### **INDETERMINATE JUMP** Indeterminacy in the Cyclic Fold (possible with a 2D outset) c352 ## **Concluding Remarks** - Bifurcation concepts for climate studies: - Co-dimension-one events in dissipative systems. - Safe, explosive and dangerous forms. - Hysteresis and basin boundary structure - Slowing of transients prior to an instability. ## Our recent publications All can be found in Jan Sieber's Homepage http://userweb.port.ac.uk/~sieberj - J.M.T. Thompson & J. Sieber, Predicting climate tipping points, in Geo-Engineering Climate Change (eds. Launder & Thompson) CUP 2010. - J.M.T. Thompson & Jan Sieber, Climate tipping as a noisy bifurcation: a predictive technique, to appear in *IMA J. Appl. Maths*. http://arxiv.org/abs/1007.1376 - J.M.T. Thompson & Jan Sieber, Predicting climate tipping as a noisy bifurcation: a review, to appear in *Int. J. Bifurcation & Chaos* (this is an extended version of the top paper).