Climate tipping as a noisy bifurcation: a predictive technique

- J Michael T Thompson (DAMTP, Cambridge)
- Jan Sieber (Maths, Portsmouth)

• Part I (JMTT) Bifurcations and their precursors

• Part II (JS) Normal form estimates

Dynamical System

ControlμResponsex

- Stable (type 1 response)
 Stable (type 2 response)
 Unstable (type 1 response)
- Unstable (type 2 response)

µ (solar heating)

Instantaneous Basin loss at a Fold

Before

After

Introduction

- Focus on the Earth, or a relevant sub-system (Lenton).
- Regard it as a nonlinear dissipative dynamical system.
- Ignore discontinuities and memory effects.
- We have a large but finite set of ODEs and phase space.
- This large complex system has activity at many scales.

Effective Noise

Small fast action is noise to the overall dynamics (OD) Models of the OD might need added random noise Bifurcations of the OD may underlie climate tipping

Control Parameters

- We may have many slowly-varying control parameters, μ_i
- But they can subsumed into a single μ (eg. slow time)
- This limits the relevant bifurcations to those with co-dimension (CD) = 1
- We now explain the co-dimension concept, before moving on to classify the *CD* = 1 bifurcations

Unfolding Euler's Ditchfork

A real column has imperfections. With P it does not reach pitchfork, C.

Catastrophe Theory shows that only one extra control is needed to hit C.

One such control is the side load, R. R = R* cancels out the imperfections.

Needing 2 controls to be observable we say a pitchfork has co-dimension 2.

A climate tip from a single slow evolution must be co-dimension 1.

Co-Dimension 1 Bifurcations (we shall be listing all 18)

Bifurcations can be classified as:

- (a) Safe Bifurcations
- (b) Explosive Bifurcations
- (c) Dangerous Bifurcations

(a) Safe Bifurcations

c273

(a.1) Local Supercritical Bifurcations

- **1. Supercritical Hopf**
- 2. Supercritical Neimark
- **3. Supercritical Flip**

(a.2) Global Bifurcations

4. Band Merging

Point to cycle Cycle to torus

Cycle to cycle

Chaos to chaos

SUBTLE: continuous supercritical growth of new attractor path SAFE: no fast jump or enlargement of the attracting set DETERMINATE: single outcome even with small noise NO HYSTERESIS: path retraced on reversal of control sweep NO BASIN CHANGE: basin boundary remote from attractors NO INTERMITTENCY: in the responses of the attractors

(b) Explosive Bifurcations

- 5. Flow Explosion
- 6. Map Explosion
- 7. Intermittency Explosion: Flow
- 8. Intermittency Explosion: Map
- 9. Regular-Saddle Explosion
- **10. Chaotic-Saddle Explosion**

Point to cycle Cycle to torus Point to chaos Cycle to chaos Chaos to chaos Chaos to chaos

CATASTROPHIC: global events, abrupt enlargement of attracting set EXPLOSIVE: enlargement, but no jump to remote attractor DETERMINATE: with single outcome even with small noise NO HYSTERESIS: paths retraced on reversal of control sweep NO BASIN CHANGE: basin boundary remote from attractors INTERMITTENCY: lingering in old domain, flashes through the new

Example of an Explosive Event

Flow-explosion transforms point attractor to a cycle

Equilibrium path has a regular saddle-node fold. Saddle outset flows around a closed loop to the node. A stable cycle is created. Initial period is infinite (critical slowing).

Precursor: same as static fold.

(c) Dangerous Bifurcations

CATASTROPHIC: blue-sky disappearance of attractor **DANGEROUS:** sudden jump to new attractor (of any type) **INDETERMINACY:** outcome can depend on global topology **HYSTERESIS:** path not reinstated on control reversal **BASIN:** tends to zero (c.2), attractor hits edge of residual basin (c.1, c.3) **NO INTERMITTENCY:** but critical slowing in global events

Jump

BASINS (1)

BASINS (2)

(b) With HYSTERESIS, blue-sky JUMPS and SHRINKING BASINS

Dangerous Bifurcations

Precursors of our 18 bifurcations

Precursors of codimension-one bifurcations (local decay rate of transients -> 0		
Supercritical Hopf Supercritical Neimark Supercritical flip Band merging	S: point to cycle S: cycle to torus S: cycle to cycle S: chaos to chaos	 linearly with control c276a linearly with control linearly with control lingers near impinging boundary
Flow explosion Map explosion Intermittency expl: flow Intermittency expl: map Regular interior crisis Chaotic interior crisis	E: point to cycle E: cycle to torus E: point to chaos E: cycle to chaos E: chaos to chaos E: chaos to chaos	 linearly along folding path linearly along folding path linearly with control as for trigger (fold, flip, Neimark) lingers near impinging saddle lingers near impinging saddle
Static fold Cyclic fold Subcritical Hopf Subcritical Neimark Subcritical flip Saddle connection Regular exterior crisis Chaotic exterior crisis	D: from point D: from cycle D: from point D: from cycle D: from cycle D: from cycle D: from cycle D: from chaos D: from chaos	 linearly along folding path linearly along folding path linearly with control linearly with control linearly with control period of cycle tends to infinity lingers near impinging saddle lingers near impinging saddle

INDETERMINATE JUMP

c352

Indeterminacy in the Cyclic Fold (possible with a 2D outset)

Concluding Remarks

- Bifurcation concepts for climate studies:
- Co-dimension-one events in dissipative systems.
- Safe, explosive and dangerous forms.
- Hysteresis and basin boundary structure
- Slowing of transients prior to an instability.

Our recent publications All can be found in Jan Sieber's Homepage http://userweb.port.ac.uk/~sieberj

- J.M.T. Thompson & J. Sieber, Predicting climate tipping points, in *Geo-Engineering Climate Change* (eds. Launder & Thompson) CUP 2010.
- J.M.T. Thompson & Jan Sieber, Climate tipping as a noisy bifurcation: a predictive technique, to appear in *IMA J. Appl. Maths*. http://arxiv.org/abs/1007.1376
- J.M.T. Thompson & Jan Sieber, Predicting climate tipping as a noisy bifurcation: a review, to appear in *Int. J. Bifurcation* & *Chaos* (this is an extended version of the top paper).