Climate tipping as a noisy bifurcation: a predictive technique

- J Michael T Thompson (DAMTP, Cambridge)
- Jan Sieber (Maths, Portsmouth)

Part I (JMTT) Bifurcations and their precursors

Part II (JS) Normal form estimates

Dynamical System

Control μ Response x

- Stable (type 1 response)
- Stable (type 2 response)
- Unstable (type 1 response)
- Unstable (type 2 response)

Instantaneous Basin loss at a Fold

Introduction

- Focus on the Earth, or a relevant sub-system (Lenton).
- Regard it as a nonlinear dissipative dynamical system.
- Ignore discontinuities and memory effects.
- We have a large but finite set of ODEs and phase space.
- This large complex system has activity at many scales.

Effective Noise

Small fast action is noise to the overall dynamics (OD) Models of the OD might need added random noise Bifurcations of the OD may underlie climate tipping

Control Parameters

We may have many slowly-varying control parameters, μ_i

But they can subsumed into a single μ (eg. slow time) This limits the relevant bifurcations to those with co-dimension (*CD*) = 1

We now explain the co-dimension concept, before moving on to classify the *CD* = 1 bifurcations

Unfolding Euler's Ditchfork

A real column has imperfections.
With P it does not reach pitchfork, C.

Catastrophe Theory shows that only one extra control is needed to hit C.

One such control is the side load, R. R = R* cancels out the imperfections.

Needing 2 controls to be observable we say a pitchfork has co-dimension 2.

A climate tip from a single slow evolution must be co-dimension 1.

Co-Dimension 1 Bifurcations (we shall be listing all 18)

Bifurcations can be classified as:

- (a) Safe Bifurcations
- (b) Explosive Bifurcations
- (c) Dangerous Bifurcations

Safe and dangerous forms of the Hopf bifurcation

click

Super-critical (safe, no jump from P^c):

Attracting oscillation (periodic attractor)

Load, PPoint attractor

Repellor

Sub–critical (dangerous, jump from P^{C}):

(a) Safe Bifurcations

(a.1) Local Supercritical Bifurcations

- 1. Supercritical Hopf Point to cycle
- 2. Supercritical Neimark Cycle to torus
- 3. Supercritical Flip Cycle to cycle

(a.2) Global Bifurcations

4. Band Merging Chaos

Chaos to chaos

SAFE: no fast jump or enlargement of the attracting set

DETERMINATE: single outcome even with small noise

NO HYSTERESIS: path retraced on reversal of control sweep

NO BASIN CHANGE: basin boundary remote from attractors

NO INTERMITTENCY: in the responses of the attractors

Chaos to chaos

CATASTROPHIC: global events, abrupt enlargement of attracting set EXPLOSIVE: enlargement, but no jump to remote attractor DETERMINATE: with single outcome even with small noise NO HYSTERESIS: paths retraced on reversal of control sweep NO BASIN CHANGE: basin boundary remote from attractors INTERMITTENCY: lingering in old domain, flashes through the new

10. Chaotic-Saddle Explosion

Example of an Explosive Event

Flow-explosion transforms point attractor to a cycle

Equilibrium path has a regular saddle-node fold.

Saddle outset flows around a closed loop to the node.

A stable cycle is created.

Initial period is infinite (critical slowing).

Precursor: same as static fold.

(c) Dangerous Bifurcations

CATASTROPHIC: blue-sky disappearance of attractor

DANGEROUS: sudden jump to new attractor (of any type)

INDETERMINACY: outcome can depend on global topology

HYSTERESIS: path not reinstated on control reversal

BASIN: tends to zero (c.2), attractor hits edge of residual basin (c.1, c.3)

NO INTERMITTENCY: but critical slowing in global events

BASINS (1)

(a) With NO HYSTERESIS and REMOTE BASIN BOUNDARIES

BASINS (2)

(b) With HYSTERESIS, blue-sky JUMPS and SHRINKING BASINS Dangerous Bifurcations

Subcritical:
Hopf
Flip
Neimark
Pitchfork (2 μ)

Folds: Static Cyclic

Precursors of our 18 bifurcations

Precursors of codimension-one bifurcations (local decay rate of transients -> 0)		
Supercritical Hopf Supercritical Neimark Supercritical flip Band merging	S: point to cycle S: cycle to torus S: cycle to cycle S: chaos to chaos	 linearly with control linearly with control linearly with control lingers near impinging boundary
Flow explosion Map explosion Intermittency expl: flow Intermittency expl: map Regular interior crisis Chaotic interior crisis	E: point to cycle E: cycle to torus E: point to chaos E: cycle to chaos E: chaos to chaos E: chaos to chaos	 linearly along folding path linearly along folding path linearly with control as for trigger (fold, flip, Neimark) lingers near impinging saddle lingers near impinging saddle
Static fold Cyclic fold Subcritical Hopf Subcritical Neimark Subcritical flip Saddle connection Regular exterior crisis Chaotic exterior crisis	D: from point D: from cycle D: from point D: from cycle D: from cycle D: from cycle D: from cycle D: from chaos D: from chaos	 linearly along folding path linearly along folding path linearly with control linearly with control linearly with control period of cycle tends to infinity lingers near impinging saddle lingers near impinging saddle

INDETERMINATE JUMP

Indeterminacy in the Cyclic Fold (possible with a 2D outset)

c352

Concluding Remarks

- Bifurcation concepts for climate studies:
- Co-dimension-one events in dissipative systems.
- Safe, explosive and dangerous forms.
- Hysteresis and basin boundary structure
- Slowing of transients prior to an instability.

Our recent publications

All can be found in Jan Sieber's Homepage http://userweb.port.ac.uk/~sieberj

- J.M.T. Thompson & J. Sieber, Predicting climate tipping points, in Geo-Engineering Climate Change (eds. Launder & Thompson) CUP 2010.
- J.M.T. Thompson & Jan Sieber, Climate tipping as a noisy bifurcation: a predictive technique, to appear in *IMA J. Appl. Maths*. http://arxiv.org/abs/1007.1376
- J.M.T. Thompson & Jan Sieber, Predicting climate tipping as a noisy bifurcation: a review, to appear in *Int. J. Bifurcation & Chaos* (this is an extended version of the top paper).