Материалы электронной техники

I – триклинная (а≠b≠с ; α ≠β≠ү≠ 90⁰); II – моноклинна я (а≠b≠с; α =β=90⁰); III – ромбическая (а≠b≠с; α =β=ү= 90⁰);

IV – те трагональная (a=b≠ c; $\alpha = \beta = \gamma = 90^{\circ}$); V – тригональ ная (a=b=c; $\alpha = \beta = \gamma \neq 90^{\circ}$); VI – гекса гональная (a=b≠c; $\alpha = \beta = 90^{\circ}$); VII – кубическая (a=b≠c; $\alpha = \beta = \gamma = 90^{\circ}$).

Рис. 1.3. Энергетические соотношения для простейшей модели атома водорода:

 1 — ядро; 2 — орбита с электроном (для ваглядности показана с наклоном);
 3 — энергетнческий уровень электрона

Рис. 1.8. Структура и плотная упаковка ионов хлориетого натрия (a) и структура и неплотная упаковка ионов хлористого цезия (б)

Рис. 1.9. Схема строения металлического проводника (а) и образования межмолекулярной связи Ван-дер-Ваальса (б)

Таблица 1.1. Пространственные решетки кристаллических систем

Кристаллическая система		Пространственная решетка	Соотношение между осевыми угламн и осевыми единицами
1. 2.	Триклинная Моноклинная	I — простая II — простая	$a \neq b \neq c; a \neq \beta \neq \gamma = 90^{\circ}$ $a \neq b \neq c; a = \gamma = 90^{\circ}; \beta \neq 90^{\circ}$
3.	Ромбнческая (ортором- бическая)	 111 — базоцентрированная 1V — простая V — базоцентрированная VI — объемноцентрированная 	$a \neq b \neq c; a = \beta = \gamma = 90^{\circ}$
4.	Ге ксагональная	VII — гранецентрированная VIII — простая	$a=b\neq c; a=\beta=90^{\circ}; \gamma=120^{\circ}$
Б.	Тетрагональная	X — простая XI — объемноцентрирован- ная	$a=b\neq c; a=\beta=\gamma=90^{\circ}$
6.	Кубическая	XII — простая XIII — объемноцентрирован- ная XIV — граиепентрированная	$a=b=c; a=\beta=\gamma=90^{\circ}$

Рнс. 1.10. Пространственные решетки шести кристаллических систем, соответствующие табл. 1.1

Рис. 1.11. Примеры обозначения кристаллографических плоскостей н направлений в кубических кристаллах с помощью индексов Миллера

Простейшие виды дислокаций – краевые и винтовые

Рис. 2.2. Краевая дислокация (а) и механизм ее образования (б)

Рис. 2.3. Искажения в кристаллической решетке при наличии краевой дислокации

Рис. 2.4. Механизм образования винтовой дислокации

 $\rho = \frac{\sum l}{V} \qquad (CM^{-2}; M^{-2})$

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м², или как суммарная длина линий дислокаций в объеме 1 м³

Плотность дислокаций и других искожений 🛩

Рис.3.2. Кривая охлаждения чистого металла

τ

Рис.3.1. Изменение свободной энергии в зависимости от температуры

Рис.3.3. Зависимость энергии системы от размера зародыша твердой фазы

Рис. 2.12. Кривые охлаждения чистого металла:

 $\Delta T_1, \Delta T_2, \Delta T_3$ — степени переохлаждения при скоростях охлаждения v_1 , v_2, v_3 соответственно ($v_1 < v_2 < v_3$)

Рис.3.4. Модель процесса кристаллизации

Рис. 3.5. Кинетическая кривая процесса кристаллизации

Рис. 3.6. Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения

Рис. 3.7. Схема стального слитка Слиток состоит из трех зон: мелкокристаллическая корковая зона; зона столбчатых кристаллов; внутренняя зона крупных равноосных кристаллов.

Рис.3.8. Схема дендрита по Чернову Д.К

Физическая природа электропроводности металлов

$$n = \frac{d}{A} N_0 \qquad (1) \qquad T_2$$

j = env, (3)

где
$$d$$
 –плотность материала; A – атомная масса; N_0 – число Авогадро, N_0 = 6,022045 $\cdot 10^{23}$

 $\frac{m\overline{U}^2}{2} = \frac{3}{2}kT$ (2) где \overline{U} – средняя скорость теплового движения; k – постоянная Больцмана, m – масса свободного электрона.

где v – средняя скорость направленного движения носителей заряда (скорость дрейфа), *е* – заряд электрона.

11

 $l = \tau (v_{th} + v_D). \quad (10) \qquad v_{th} \gg v_D.$

$$v_{th} = \left(\frac{3kT}{m}\right)^{1/2} \simeq 10^5 \text{ m/c}.$$

Проводниковый материал	, (ом	·CM) $\sigma = \frac{1}{2}$
Серебро (химически чистое)	1,47 10 ⁻⁶	6,8 10 ⁵
Медь (химически чистая)	1,55 10 ⁻⁶	6,45 10 ⁵
Медь (техническая)	1,7 10 ⁻⁶	5,9 10 ⁵
Вольфрам	5,3 10 ⁻⁶	1,9 10 ⁵
Платина	9,8 10 ⁻⁶	1,0 10 ⁵
Железо (химически чистое)	9,60 10 ⁻⁶	1,04 10 ⁵
Железо (техническое)	12 10 ⁻⁶	8,3 10 ⁴
Свинец	20 10 ⁻⁶	5,0 10 ⁴
Никелин (сплав Cu <i>,</i> Ni и Mn)	40 10 ⁻⁶	2,5 10 ⁴
Манганин (сплав Cu, Ni и Mn)	43 10 ⁻⁶	2,3 10 ⁴
Константан (сплав Си и Mn)	50 10 ⁻⁶	2,0 10 ⁴
Ртуть	94,1 10 ⁻⁶	1,06 10 ⁴
Нихром (сплав Ni и Cu)	110 10 ⁻⁶	9,1 10 ³
Алюминий Al	2,8 10 ⁻⁶	

$$\begin{split} \lambda_{\tau} = (1/2) \ln \overline{U} \quad \overline{L} & (9) \\ \lambda_{\tau} / = 3k^{2} e^{2} T = L_{0} T & L_{0} = \lambda_{\tau} / (\sigma T) = (\pi^{2}/3)(k/e)^{2} = 2,45 \ 10^{-8} \ B^{2} K^{-2} \\ C_{V} = C_{peut} + C_{e} = 3R + (3/2) k N_{0} = (9/2) R & F(\Im) = A exp \left[-\frac{\Im}{kT} \right] & (10) \\ F(\Im) = \left[1 + exp(\Im - \Im_{F}) / k T \right]^{-1} & (11) & \varphi_{F} = \Im_{F} / e^{-\frac{\Im}{norenuuan}} \\ Mectro \quad Для \quad \varphi_{F} = \Im_{F} / e^{-\frac{\Im}{norenuuan}} \\ \lambda = h i (m_{q} u) & \rho \quad -\text{тепловой } \phi \text{актор} \\ \overline{l}_{\tau} = k_{ynp} / 2\pi N k T, (12) & \alpha_{\rho} = \frac{1}{\rho} \cdot \frac{d\rho}{dT} & (13) \\ \rho = \rho_{0} \left[1 + \alpha_{\rho} (T - T_{0}) \right] & (14) \\ \rho = \rho_{T} + \rho_{ocr} & (15) & \frac{\beta = \rho_{300} / \rho_{4,2}}{(16)} \\ \rho = \rho_{0} (1 \pm \varphi \sigma) & \text{гле } \varphi = \frac{1}{\rho} \frac{\partial \rho}{\partial \sigma} \end{split}$$

 $C = K - \varPhi + 2 \qquad C = K - \varPhi + 1$

Рис. 4.1. Схема микроструктуры механической смеси

Рис. 4.2. Кристаллическая решетка химического соединения

Рис.4.4. Кристаллическая решетка твердых растворов замещения (а), внедрения (б)

Рис.4.3. Схема микроструктуры твердого раствора

Рис.5.1 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (а); кривые охлаждения типичных сплавов (б)

Рис. 4.5. Диаграмма состояния

Рис. 5.2. Схема микроструктуры сплава

- однородного твердого раствора

Рис. 5.6. Диаграмма состояния сплавов, компоненты которых образуют химические соединения

охлаждения типичных сплавов (б)

Рис. 5.7. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (а) и кривая охлаждения сплава (б)

Рис. 5.8. Связь между свойствами сплавов и типом диаграммы состояния

Электрические свойства металлических сплавов

$$\rho_{\rm CII,I} = \rho_{\rm T} + \rho_{\rm OCT},\tag{3.1}$$

$$\rho_{\text{OCT}} = \mathbf{C} \cdot \mathbf{X}_{\text{A}} \cdot \mathbf{X}_{\text{B}} = \mathbf{C} \cdot \mathbf{X}_{\text{B}} \cdot (\mathbf{1} - \mathbf{X}_{\text{B}}), \tag{3.2}$$

$$J = \Pi \int_{0}^{\infty} J_{0} \exp(-z/\Delta) dz = J_{0} \Pi \Delta,$$

$$S_{\mathfrak{Z}} = \Pi \Delta = \qquad \qquad k_{R} = \frac{R_{1}}{R_{0}} = \frac{S_{0}}{S_{\mathfrak{Z}}} = \frac{\pi d^{2}/4}{\pi d\Delta} = \frac{d}{4}$$

$$\Pi d\Delta.$$

Рисунок 8 – Зависимости удельного сопротивления (а) и температурного коэффициента удельного сопротивления (б) тонкой металлической пленки от её толщины

5

$$1/I_{\delta} = 1/I + 1/I_{S'} \qquad \rho = \frac{m_n U_F}{e^2 n l} = \rho_T + \frac{m_n U_F S_{II}}{e^2 n} \cdot N_{II}$$

 $R_s = \rho/\Delta$,

$$\rho_{\delta} = \frac{m_n U_F}{e^2 n l_{\delta}} = \rho \left(1 + \frac{l}{\delta} \right), \quad \text{(3.5)} \qquad \rho_{\delta} = \rho \left[1 + \frac{3}{8} (1 - F_0) \frac{l}{\delta} \right] \quad \text{для } \delta/l_{\delta} > 1$$

$$\rho_{\delta} = \rho \left[\frac{4}{3} \frac{l}{8} \frac{1 - F_0}{1 + F_0} \left(\ln \frac{l}{8} \right)^{-1} \right]$$
для $\delta/I_{\delta} <<$

$$R = R_{\Box} \cdot l_0 / d_0, \qquad \lambda / \gamma = \mathbf{L}_0 / \mathbf{T}, \qquad \mathbf{L}_0 = \frac{1}{(\mathbf{\pi} \cdot \mathbf{k})^2 / (3 \cdot \mathbf{e}^2)}. \qquad TKl = \frac{1}{l} \frac{dl}{dT},$$

 $TKR = TK\rho - TKl.$

(3.6)