
Взаимодействие генов

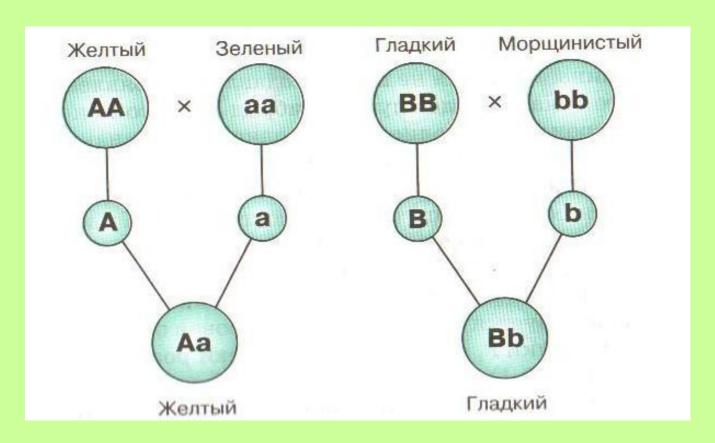
• Цель: выяснить закономерности наследования признаков при взаимодействии аллельных и неаллельных генов.

Проблема 1. Каковы причины и результаты взаимодействия аллельных генов?

Взаимодействие генов – совместное действие нескольких генов, приводящее к появлению признака, отсутствующего у родителей, или усиливающее проявление уже имеющегося признака.

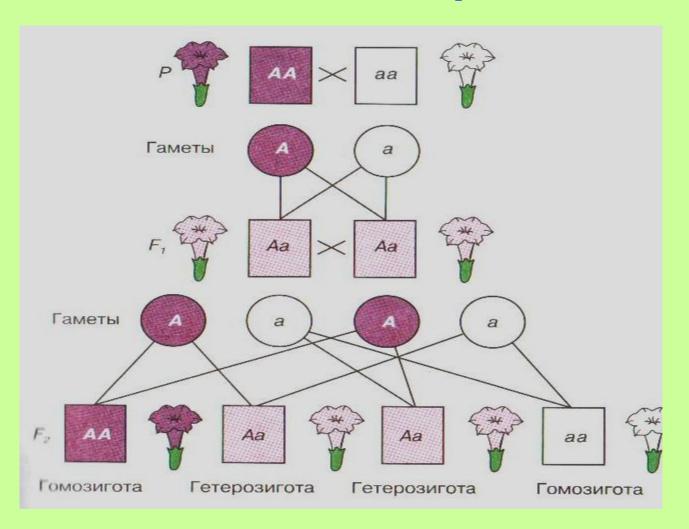
Вступать во взаимодействие могут как аллельные, так и неаллельные гены.

Взаимодействие генов


• Аллельных

- Полное доминирование
- Неполное доминирование
- 3. Множественный аллелизм
- 4. Кодоминирование
- 5. Сверхдоминирование

• Неаллельных


- 1. Комплементарность
- 2. Эпистаз
- 3. Полимерия
- 4. Плейотропия

Полное доминирование

Наследование признаков окраски и формы семян у гороха

Неполное доминирование

Наследование окраски цветка у ночной красавицы

Кодоминирование

- Кодоминирование явление независимого проявления двух доминантных аллелей в фенотипе зиготы, т.е. отсутствие доминантнорецессивных отношений между аллелями.
- Например, при наследовании групп крови у человека.
- Ген I имеет три аллеля: I^A и I^B кодирует два разных фермента, i⁰ не кодирует никакого. При этом аллель i⁰ рецессивен по отношению к I^A и I^B, а между двумя последними нет доминантно-рецессивных отношений

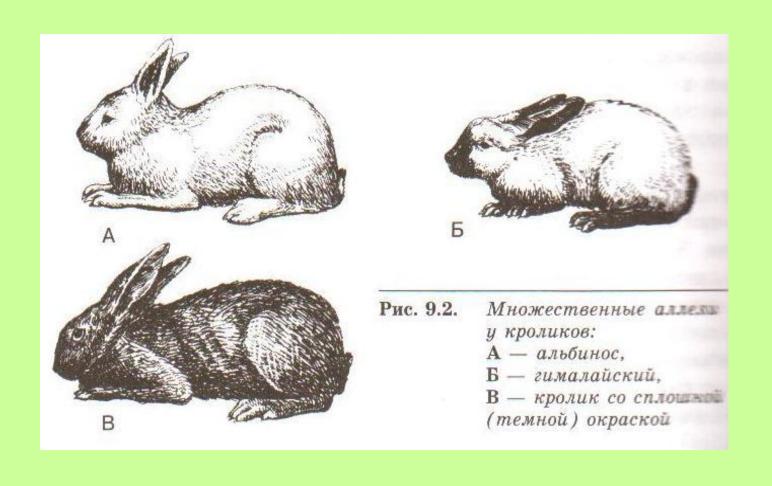
Варианты взаимодействия трех аллельных генов

Генотипы различных групп крови у человека

Фенотипы групп крови
у человека

Аллельные гены	i ⁰	Ι ^Α	I B
i ⁰			
ΙA			
I B			

Фенотипи- ческие	Генотипы
группы	
I	
II	
III	
IV	


Задачи

- 1. У матери I группа крови, у отца IV. Могут ли дети унаследовать группу крови одного из родителей?
- 2. Родители имеют II и III группы крови, а их дочь I группу. Определите генотипы крови родителей и ребенка. Возможно ли переливание крови родителей их ребенку?
- 3. В родильном доме перепутали двух мальчиков. У одного ребенка I группа крови, а у другого II группа. Анализ показал, что одна супружеская пара имеет I и II группы, а другая II и IV. Определите, какой супружеской паре принадлежит тот или иной ребенок.

Дополнительные задачи

- 1. Определите возможные генотипы и фенотипы детей, если мать имеет вторую группу крови, не страдает нарушением цветного зрения, но является гетерозиготой по обоим признакам, а у отца третья группа крови и нормальное зрение (гомозигота по обоим признакам). Дальтонизм рецессивный признак, сцепленный с X-хромосомой.
- 2. Определите возможные генотипы и фенотипы детей, если мать имеет четвертую группу крови и гетерозиготна по гену альбинизма, у отца первая группа крови, он гетерозиготен по гену альбинизма. Альбинизм рецессивный аутосомный признак.

Множественный аллелизм

Вывод:

Вариант взаимодействия	Причина	Результат
 Полное доминирование Неполное доминирование Множественный аллелизм Кодоминирование Сверхдоминирование Сверхдоминирование 	Нарушение доминантно- рецессивных отношений	Проявлениепризнаков у гетерозигот Проявлениепризнаков у гетерозигот Проявлениепризнаков у гетерозигот Проявлениеаллелей у гетерозигот Большая степень выраженности признака у гетерозигот, явление гетерозиса — гибридной силы

Проблема 2: Каковы результаты взаимодействия неаллельных генов? Комплементарность.

 взаимодействие неаллельных генов, при котором они дополняют действие друг друга, и признак формируется при одновременном действии обоих генов.

Расщепление по фенотипу при комплементарности:

- 9:3:3:1 каждый доминантный ген имеет самостоятельное фенотипическое проявление, сочетание в генотипе двух этих генов обусловливает развитие нового фенотипического проявление, а их отсутствие не даёт развитие признака.
- 9:7 доминантные и рецессивные аллели комплементарных генов не имеют самостоятельного фенотипического проявления.
- 9:3:4 доминантные и рецессивные аллели комплементарных генов имеют самостоятельные фенотипические проявления.
- 9:6:1 сочетание доминантных аллелей комплементарных генов обеспечивает формирование одного признака, сочетание рецессивных аллелей этих генов другого, а сочетание в генотипе только одного из доминантных генов третьего признака.

Комплементарность

- Например, у душистого горошка ген А обуславливает синтез пропигмента – предшественника пигмента, а ген В определяет синтез фермента, который переводит пропигмент в пигмент, поэтому окрашенные цветки могут быть только при наличии обоих генов.
- Задача: Каковы фенотипы родителей и потомства при скрещивании растений душистого горошка с генотипами ААвв и ааВВ?

Эпистаз.

- Эпистаз взаимодействие неаллельных генов, при котором один из генов полностью подавляет действие другого гена.
- Ген, подавляющий действие другого гена, называется **геном-супрессором**_(ингибитором, эпистатичным геном).
- Подавляемый ген называется гипостатичным.
- Эпистаз может быть как доминантным, так и рецессивным.

Доминантный эпистаз.

- Например, у тыквы доминантный ген Y вызывает появление желтой окраски плодов, а его рецессивная аллель у зеленой. Кроме того, имеется доминантный ген W, подавляющий проявление любой окраски, в то время как его рецессив w не мешает окраске проявляться, поэтому растения, имеющие в своем генотипе хотя бы один доминантный ген W, будут образовывать белые плоды независимо от аллели Y y.
- Задача: определить фенотипы тыкв с генотипами

```
    YYWW- YYWW-
    YyWW- YyWW-
    yyWW- yyWw- yyww-
```

Рецессивный эпистаз.

- Например, у домовых мышей рыжевато-серая окраска шерсти (агути) определяется доминантным геном A, его рецессивная аллель а в гомозиготном состоянии определяет черную окраску. Доминантный ген другой пары C определяет развитие пигмента, а гомозиготы по его рецессивному аллелю с являются альбиносами (отсутствие пигмента в шерсти и радужной оболочке глаз).
- Задача: определить фенотипы мышей с генотипами
- AACC AACc AAcc -
- AaCC AaCc Aacc -
- aaCC aaCc aacc -
- Если А ген рыжевато-серой окраски (агути)
 - а ген черной окраски
 - С ген наличия пигмента
 - с ген отсутствия пигмента

Полимерия.

- Полимерия взаимодействие неаллельных генов, при котором на проявление одного признака влияет одновременно несколько генов (при этом, чем больше в генотипе доминантных генов, тем более выражен признак).
- Например, у человека количество меланина в коже определяется тремя неаллельными генами A₁A₂A₃. Наибольшее количество меланина характерно для генотипа A₁A₁A₂A₃A₃, что обуславливает темно-коричневый цвет кожи представителей негроидной расы. Для европеоидов характерен генотип a₁a₁a₂a₂a₃a₃. Промежуточные варианты будут определять различную интенсивность пигментации. При этом чем больше доминантов в генотипе, тем темнее кожа.

Плейотропия.

- Плейотропия явление одновременного влияния одного гена на несколько признаков.
- Существование этого явления не противоречит классической концепции «один ген один белок один признак», т.к. в результате считывания информации с гена образуется некий белок, который может участвовать в различных процессах, происходящих в организме, оказывая таким образом множественное действие.
- Например, у овса окраска чешуи и длина ости контролируется одним геном.
- У человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и появление веснушек.