
Еще раз про электролиз...

Романова В.О., к.х.н., учитель химии первой категории МОУ – Лицей №2

Порядковый № задания в работе	Проверяемые элементы содержания	Уровень сложности задания	Примерное Время выполнения Задания (мин.)
22	Электролиз расплавов и растворов (солей, щелочей, кислот)	Б	2
16 17	Важнейшие способы получения органических соединений	П	5-7
32	Реакции, подтверждающие взаимосвязь различных классов неорганических веществ	В	10-15
34	Расчёты массы (объёма, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси). Расчёты с использованием понятия «массовая доля вещества в растворе».	В	10-15

МОУ - Лицей № 2 г. Саратова

ЭЛЕКЛІРОЛИЗ

Романова Вероника Олеговна – учитель химии, к.х.н

Установите соответствие между формулой вещества и продуктом, выделяющимся на катоде при электролизе водного раствора этого вещества.

ФОРМУЛА ВЕЩЕСТВА	КАТОДНЫЙ ПРОДУКТ	
A) K ₂ CO ₃	1) кислород	
Б) AgNO ₃	2) только металл	
B) ZnCl ₂	3) только водород	
Γ) NaHC ₂ O ₄	4) металл и водород	
1 532 A 1 I I I 82 V 130	5) a30T	
	6) хлор	

На катоде

Электролиз растворов электролитов

РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H)Sb Bi Cu Hg Ag Pt Au

Если в растворе имеются ионы H^+ , Sb^{2+} ... Au^{3+} , то происходит их восстановление Cu^{2+} + $2e \rightarrow Cu^0$

2

Если в растворе имеются ионы от Li⁺ до Al³⁺ (вкл.), то восстанавливаются молекулы воды:

2H₂O + 2e → H₂ + 2OH⁻

Если в растворе имеются ионы от Mn^{2+} до Pb^{2+} , то возможны конкурирующие процессы $Zn^{2+} + 2e \rightarrow Zn^{0}$ $2H_2O + 2e \rightarrow H_2 + 2OH^{-}$

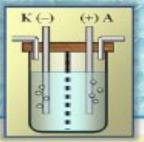

Установите соответствие между схемой реакции и органическим веществом, которое является продуктом этой реакции.

СХЕМА РЕАКЦИИ	ПРОДУКТ РЕАКЦИИ
t A) ацетат кальция \to H_2SO_4 Б) ацетат натрия \to электролиз; H_2O В) ацетат натрия \to NаOH, t	1) CH ₄ 2) C ₂ H ₆ 3) C ₃ H ₈ 4) CH ₃ CH ₂ OH 5) CH ₃ C(O)CH ₃ 6) CH ₃ COOH

— Нерастворимый (инертный) - Рt, С (графит)

Растворимый (активный) – Си, Zn, Al, Fe и др.

Нерастворимый анод

>1>

Если в растворе имеются анионы CI^- , Br^- , I^- , S^{2-} то происходит **их окисление** $2CI^- - 2e \rightarrow CI_2^{0}$

2

Если в растворе имеются анионы кислородсодержащих кислот SO_4^{2-} , NO_3^- , PO_4^{3-} ... F^- , то окисляются молекулы воды $2H_2O - 4e \rightarrow O_2 + 4H^+$

3

Если в растворе имеются анионы OH^- , то $4OH^-$ - $4e \rightarrow O_2 + 2H_2O$

Если в растворе имеются анионы органических кислот, то происходит **их окисление**

2RCOO- - 2e → R-R + 2CO2

Вещество, выделившееся на катоде при электролизе водного раствора сульфата меди (II) с угольными электродами, нагрели с оксидом меди (II). Продукт реакции, вещество красного цвета, растворили в концентрированной азотной кислоте при нагревании; реакция сопровождалась выделением бурого газа. При добавлении к полученному раствору раствора сульфида натрия образовался черный осадок. Напишите уравнения четырёх описанных реакций. Вариант ответа:

1)
$$2CuSO_4 + 2H_2O = 2Cu + 2H_2SO_4 + O_2\uparrow$$
 (электролиз)

2)
$$Cu + CuO = Cu_2O$$

3)
$$Cu_2O + 6HNO_{3(KOHIL.)} = 2Cu(NO_3)_2 + 2NO_2 \uparrow + 3H_2O$$

4)
$$Cu(NO_3)_2 + Na_2S = CuS \downarrow + 2NaNO_3$$

электролиз

 $2 \text{ CuSO}_4 + 2\text{H}_2\text{O} \rightarrow 2\text{Cu}\downarrow + \text{O}_2\uparrow + 2\text{H}_2\text{SO}_4$

Провели электролиз водного раствора нитрата меди (II). Выделившийся при этом газ прореагировал с натрием. Полученное при этом вещество растворили в холодной воде. К образовавшемуся раствору добавили раствор сульфата хрома (III) и нагрели, при этом раствор приобрёл жёлтый цвет. Напишите уравнения четырёх описанных реакций.

Вариант ответа:

- 1) $2Cu(NO_3)_2 + 2H_2O = 2Cu + O_2\uparrow + 4HNO_3$ (электролиз)
- 2) $2Na + O_2 = Na_2O_2$
- 3) $Na_2O_2 + 2H_2O = 2NaOH + H_2O_2$ (при охлаждении)
- 4) $Cr_2(SO_4)_3 + 3H_2O_2 + 10NaOH = 2Na_2CrO_4 + 3Na_2SO_4 + 8H_2O$

Задание 34 (1). При <u>частичном электролизе</u> 300 г раствора нитрата меди (II) получен раствор массой 288 г, содержащий 4,5% нитрата меди (II). Вычислите массовую долю нитрата меди (II) в исходном растворе.

Решение

Уравнение электролиза:

$$2Cu(NO_3)_2 + 2H_2O = 2Cu\downarrow + O_2\uparrow + 4HNO_3$$

2 моль 2 моль 1 моль 4 моль

При электролизе образовались медь и кислород, поэтому уменьшилась масса раствора. Следовательно,

$$\Delta \text{ m}(\text{Cu} + \text{O}_2) = 300 \text{ r} - 288 \text{ r} = 12 \text{ r};$$

Пусть:

$$n(O_2) = x$$
 моль, $n(Cu) = 2x$ моль.

Тогда $32x + 64 \cdot 2x = 12 \Rightarrow x = 0,075$ моль = $n(O_2)$; $n(Cu(NO_3)_{2 \text{ прореаг.}}) = 2n(O_2) = 0,15$ моль,

$$m(Cu(NO_3)_{2 \text{ прореаг.}}) = 0.15 \text{ моль} \cdot 188 \text{ г/ моль} = 28.2 \text{ г;}$$

 $m(Cu(NO_3)_{2 \text{ oct.}}) = 288 \text{ r} \cdot 0.045 = 12.96 \text{ r},$

$$m(Cu(NO_3)_{2 \text{ Hcx.}}) = 28.2 \text{ } \Gamma + 12.96 \text{ } \Gamma = 41.16 \text{ } \Gamma;$$

 $ω(Cu(NO_3)_2) = 41.16 \text{ } \Gamma : 300 \text{ } \Gamma \cdot 100\% = 13.72\%$

Ответ: 13,72%

Задание 34 (2). Электролиз 400 г 8,5%-ного раствора нитрата серебра продолжали до тех пор, пока масса раствора не уменьшилась на 25 г. Вычислите массовые доли соединений в растворе, полученном после окончания электролиза, и массы веществ, выделившихся на инертных электродах.

Решение

1) Уравнение электролиза:

$$4AgNO_3 + 2H_2O = 4Ag\downarrow + 4HNO_3 + O_2\uparrow$$

4 моль 4 моль 1 моль

2) m(AgNO₃ в растворе) = $400\Gamma \cdot 0.085 = 34 \Gamma$; n (AgNO₃) = $34 \Gamma / 170 \Gamma / \text{моль} = 0.2 моль$;

При полном электролитическом разложении данного количества соли выделяется 0,2 моль Ag (m(Ag) = 0,2 моль · 108г/ моль = 21,6 г) и 0,05 моль O₂ (m(O₂) =0,05 моль·32г/ моль=1,6г), Общее уменьшение массы раствора за счет Ag и O₂ составит:

 $21,6 \Gamma + 1,6 \Gamma = 23,2 \Gamma$.

При электролизе образовавшегося раствора азотной кислоты электролизу подвергается и вода:

$$2H_2O = 2H_2 + O_2 \uparrow$$

2 моль 2 моль 1 моль

Потеря массы раствора за счет электролиза воды составляет:

$$25 \Gamma - 23, 2 \Gamma = 1, 8 \Gamma$$
.

 $n(H_2O) = 1.8 \ \Gamma / 18\Gamma / моль = 0.1 моль;$

На электродах выделилось 0,1 моль H_2 (m = 0,1 моль 2r/ моль = 0,2r),

и 0,05моль O_2 (m =0,05 моль·32г/ моль = 1,6 г),

$$m(O_{2 \text{ общая}}) = 1,6 \Gamma + 1,6 \Gamma = 3,2 \Gamma;$$

3) В оставшемся растворе:

$$n(HNO_3) = n(AgNO_3) = 0.2$$
 моль,

 $m(HNO_3) = 0.2 \text{ моль} \cdot 63 \Gamma / \text{ моль} = 12.6 \Gamma;$

 $m(конеч. pаствора) = 400 \Gamma - 25 \Gamma = 375 \Gamma;$

$$\omega(\text{HNO}_3) = 12,6 \, \Gamma / 375 \, \Gamma = 0,0336$$
, или 3,36%.

Ответ: ω (HNO₃) = 3,36%;

K(+) 21,6 г Ag \downarrow и 0,2 г H₂ \uparrow , A(+) = 3,2 г O₂.

Уравнения реакций: $Na_2S + 2H_2O = 2NaOH + H_2\uparrow + S\downarrow$ 4NaOH + ZnSO₄ = Na₂[Zn(OH)₄] + Na₂SO₄ $m(Na_2S) = 120 \cdot 0.039 = 4.68 \, \Gamma$ $n(Na_2S) = 4.68 : 78 = 0.06 \text{ моль},$ $n(NaOH) = 2n(Na_2S) = 0,12$ моль; $n(ZnSO_4) = n(ZnSO_4 \cdot 7H_2O) = 2,87 : 287 = 0,01$ моль. Гидроксид натрия в большом избытке, поэтому реакция (2) действительно протекает с образованием комплексной соли. Максимальная масса осадка выпадет при нейтрализации остатка гидроксида натрия и частичном разрушении

Задание 34 (3). К раствору, полученному после электролиза 120 г

3,9%-го раствора сульфида натрия, добавили 2,87 г цинкового

купороса (ZnSO₄·7H₂O). Определите, сколько грамм 10%-ой

соляной кислоты нужно прилить к образовавшемуся раствору, чтобы

выпала максимально возможная масса осадка.

Решение

комплекса:

Гидроксид натрия в большом избытке, поэтому реакция (2) действительно протекает с образованием комплексной соли. Максимальная масса осадка выпадет при нейтрализации остатка гидроксида натрия и частичном разрушении комплекса:

NaOH + HCl = NaCl + H₂O (3)
Na₂[Zn(OH)₄] + 2HCl = 2NaCl + Zn(OH)₂↓ + 2H₂O (4)
n(NaOH_{ост.}) =
$$0.12 - 0.01 \cdot 4 = 0.08$$
 моль,
n(Na₂[Zn(OH)₄]) = n(ZnSO₄) = 0.01 моль;
n(HCl) = $2n(Na_2[Zn(OH)_4]) + n(NaOHост.) = $0.02 + 0.08 = 0.1$ моль
m(HCl) = $0.1.36.5 = 3.65$ г
m(HCl)p-pa = $3.65:0.1 = 36.5$ г$

Ответ: 36,5 г

Ты ушла от меня электроном, Я остался унылым ионом. Положительный, вроде, заряд, Но я этому вовсе не рад.

Электродами было разбито Счастье хрупкое электролита. Отключу напряженье извне - Может быть, ты вернёшься ко мне...

Спасибо за внимание!