ПЕРЕВОЗКА СПГ АВТОТРАНСПОРТОМ ОСОБЕННОСТИ И РАСЧЕТЫ

Подготовил: студент ТНМ-20-02 Вениамин

Преимущества и недостатки перевозки газа автомобильным транспортом

Преимущества

- □ Груз доставляется даже туда, где не летают самолеты или не ходят поезда;
- □ Выбирается надежная схема пути;
- Это экономно, по сравнению с другими способами, когда речь идет о небольших объемах газа;
- □ Высокая скорость

Недостатки

- ☐ Нужно строго соблюдать правила движения автомобиля;
- □ Повышенный риск у водителя газовоза, водителей соседних автомобилей, рядом расположенных объектов;
- □ Ограниченный объем перевозимого топлива;
- □ Высокие требования исправности автомобильного транспорта;
- □ Возврат порожняком.

О Нормативно-правовая регулиру

- ☐ Европейское Соглашение о международной дорожной перевозке опасных грузов (ДОПОГ).
- Правила перевозки опасных грузов автомобильным транспортом, утвержденные приказом Минтранса РФ от 8 августа 1995 года №73
- Приказ Минтранса РФ от 4 июля 2011 года №179 «Об утверждении Порядка выдачи специального разрешения на движение по автомобильным

ПОРЯДОК

ВЫДАЧИ СПЕЦИАЛЬНОГО РАЗРЕШЕНИЯ НА ДВИЖЕНИЕ ПО АВТОМОБИЛЬНЫМ ДОРОГАМ ТРАНСПОРТНОГО СРЕДСТВА, ОСУЩЕСТВЛЯЮЩЕГО ПЕРЕВОЗКУ ОПАСНЫХ ГРУЗОВ

Утвержден Приказом Минтранса России от 04.07.2011 № 179

FORGEON TROUGHORTHOE

О Используемые автомобили

При перевозках сжиженного газа автотранспортом используются два основных вида машин:

Газовозы

О Типы емкостей при автомобильном транспорте СПГ

□ При автомобильных перевозках СПГ используются транспортные емкости:

Криогенные цистерны

Танк-контейнер

Требования к оборудованию и маркировке транспортных средств

- □ ТО 2 раза в год;
- □ Диагностическая карта;
- □ Свидетельство о допуске к перевозке опасных грузов;
- □ ТС должно быть включено в реестр категорированных объектов тра инфраструктуры и транспортных средств;
- □ ТС должно быть оснащено ГЛОНАСС/GPS, системой ABS и тахогра
- □ ТС должно быть оборудовано доп. Защитой топливного бака и проблесковыми маячками;
- □ ТС должно проходить предрейсовое и послерейсовое ТО;
- □ Тягач должен иметь светоотражающее информационное табло ораӊжевого цвета
 - с идентификационным номером опасности 223 и № ООН 1972, обоз
 - СПГ;

□ Цистерна-полуприцеп такое же светоотражающее информационное огрением.

223

1972

О Требования к экипажу транспортного средства

- □ В штат транспортной компании, специализирующейся на перевозках опасных грузов, входит консультант по вопросам безопасности перевозки опасных грузов.
- Приказами Минтранса № 202 и 203
 утверждены курсы подготовки и порядок выдачи свидетельств для водителей и консультантов.
- ☐ Дополнительно водители-операторы проходят аттестацию по программе и получают удостоверение для работы.
- □ Водители-операторы обязаны иметь соответствующую экипировку: антистатическую спецодежду, криогенные

о Оборудование

□ Запор

Контрольно-измерительное

☐ Насосное

Защит ное

О Изоляция

- Наиболее распространенный способ изоляции автоцистерн изоляция порошком под вакуумом;
- Цена цистерны с вакуумной порошковой изоляцией лишь немного выше, а иногда даже ниже, чем цистерна, изолированной только порошком;
- □ В качестве порошка используется в основном

О Схема и особенности движения по

автодороге

- □ Согласование маршрута с ГИБДД (при перевозке свыше 300 литров);
- □ Обход населенных пунктов, заповедников, парковых зон;
- □ Соблюдение индивидуального скоростного режима;
- □ Соблюдение минимальной дистанции между автоцистернами 50 метров (300 метров на подъемах и спусках);
- □ Включенный ближний

О Расчет на допускаемое напряжение

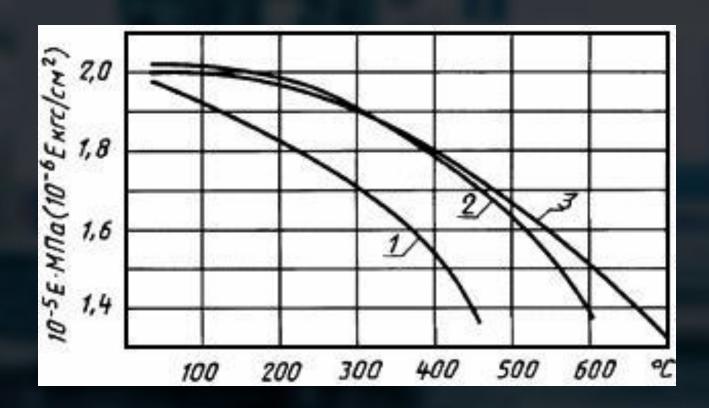
□ Допускаемое напряжение при расчете по предельным нагрузкам определяют:

ДПЯ УГПЕРОЛИСТЫХ И НИЗКОПЕГИРОВАННЫХ СТАЛЕЙ
$$[\sigma] = \eta \cdot \min \left(\frac{R_e \text{ или } R_{p0,2}}{n_{\text{т}}}; \frac{R_m}{n_{\text{в}}}; \frac{R_{m/10^5}}{n_{\text{д}}}; \frac{R_{p1,0/10^5}}{n_{\text{п}}} \right);$$

$$[\sigma] = \eta \cdot \min \left(\frac{R_{p1,0}}{n_{\text{T}}}; \frac{R_m}{n_{\text{в}}}; \frac{R_{m/10^5}}{n_{\text{д}}}; \frac{R_{p1,0/10^5}}{n_{\text{д}}} \right).$$

□ Для условий испытания допускаемое напряжение определяют:для углеродистых и низколегированных сталей

$$[\sigma] = \eta \frac{R_e^{20} \text{ или } R_{p0,2}^{20}}{n_T}$$


для аустенитных

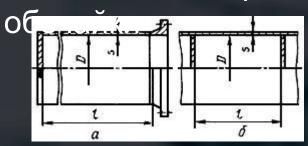
$$[\sigma] = \eta \frac{R_{p0,2}^{20} \text{ или } R_{p1,0}^{20}}{n_{\text{T}}}.$$

Условие нагружения	Коэффициент запаса прочности			
	$n_{\mathtt{T}}$	n_{B}	$n_{\rm II}$	n_{π}
Рабочие условия	1,5	2,4	1,5	1,0
Условия испытания:				
- гидравлические испытания	1,1	-	(=)	-
- пневматические испытания	1,2	-	(40)	141
Условия монтажа	1,1	_	2	- 12

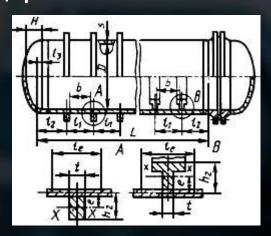
О Расчетные значения модуля продольной

УПРУГОСТИ □ Расчетные значения модуля продольной упругости для углеродистых и легированных сталей в зависимости от температуры должны соответствовать значениям:

- 1 углеродистые и низколегированные стали;
- 2 теплоустойчивые и коррозионностойкие хромистые стали;
- 3 жаропрочные, жаростойкие и коррозионностойкие аустенитные стали

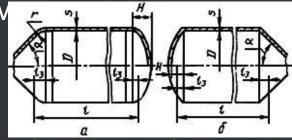

о Коэффициенты прочности сварных швов

☐ Числовые значения коэффициентов прочности сварных швов должны соответствовать значениям:

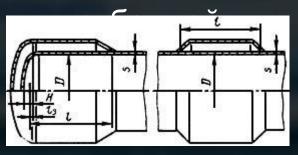

Вид сварного шва	Значение коэффициентов прочности сварных швов		
	Длина контролируемых швов от общей длины составляет 100%*	Длина контролируемых швов от общей длины составляет от 10 до 50%*	
Стыковой или тавровый с двусторонним сплошным проваром, выполняемый автоматической и полуавтоматической сваркой	1,0	0,9	
Стыковой с подваркой корня шва или тавровый с двусторонним сплошным проваром, выполняемый вручную	1,0	0,9	
Стыковой, доступный сварке только с одной стороны и имеющий в процессе сварки металлическую подкладку со стороны корня шва, прилегающую по всей длине шва к основному металлу	0,9	0,8	
Втавр, с конструктивным зазором свариваемых деталей	0,8	0,65	
Стыковой, выполняемый автоматической и полуавтоматической сваркой с одной стороны с флюсовой или керамической подкладкой	0,9	0,8	

о Расчет цилиндрических обечаек

Гладкие цилиндрические



а - обечайка с фланцем или с плоским днищем, б - обечайка с жесткими перегородками Цилиндрическая обечайка, подкрепленная кольцами


Гладкие обечайки с выпуклыми или

коническим

а - обечайка с отбортованными днищами, б - обечайка с неотбортованными днищами

Гладкие обечайки с

О Расчет цилиндрических обечаек

Толщину стенки при внутреннем избыточном

$$s_{\mathbf{p}} = \frac{pD}{2[\sigma]\varphi_{p} - p}.$$

$$c = c_{1} + c_{2} + c_{3}.$$

$$c = c_1 + c_2 + c_3$$
.

Толщину стенки при осевом растягивающем усилии определяют:

$$s \geq s_p + c$$
,

$$s_{\rm p} = \frac{F}{\pi D[\sigma] \varphi_{\rm T}}$$

Допускаемое внутреннее избыточное давление:

$$[p] = \frac{2[\sigma]\varphi_p(s-c)}{D + (s-c)}$$

Допускаемое осевое растягивающее

$$[F] = \pi(D + s - c)(s - c)[\sigma]\varphi_{T}$$

СПАСИБО ЗА ВНИМАНИЕ!