

Методика решения рекурсивных алгоритмов (проблемы решения задач данного типа а ЕГЭ)

Миляева О.И., учитель информатики и ИКТ МБОУ СОШ № 9 г. Холмска

Рекурсия – это свойство объекта подражать самому себе. Объект является рекурсивным если его части выглядят также как весь объект. Рекурсия очень широко применяется в математике и программировании:

$$F(n)=n^*(n-1)^*...*1, 0!=1$$

Рекурсивное определение этой функции имеет вид:

$$F(n) = \begin{cases} 1, n = 0 \\ n * F(n-1), n > 0 \end{cases}$$

Что нужно знать:

рекурсия – это приём, позволяющий свести исходную задачу к одной или нескольким более простым задачам того же типа

чтобы определить рекурсию, нужно задать условие остановки рекурсии (базовый случай или несколько базовых случаев) рекуррентную формулу

любую рекурсивную процедуру можно запрограммировать с помощью цикла

рекурсия позволяет заменить цикл и в некоторых сложных задачах делает решение более понятным, хотя часто менее эффективным

существуют языки программирования, в которых рекурсия используется как один из основных приемов обработки данных (Lisp, Haskell)

Ниже на пяти языках программирования записана рекурсивная функция (процедура) F.

```
Бейсик
                                  Python
SUB F(n)
                                  def F(n):
                                      print (n, end='')
  print n,
  IF n >= 7 THEN
                                     if n >= 7:
                                          F(n-3)
   F(n-3)
   F(n-1)
                                          F(n-1)
  END IF
END SUB
Алгоригмический язык
                                  Паскаль
алг F(цел n)
                                  procedure F(n: integer);
                                  begin
нач
                                    write (n);
  вывод п
                                   if n >= 7 then
  если n >= 7 то
   F(n - 3)
                                    begin
                                    F(n - 3);
   F(n-1)
                                     F(n - 1)
  BCe
                                    end
KOH
                                  end;
Си
void F (int n) {
  printf("%d", n);
  if (n >= 7) {
    F(n - 3);
    F(n - 1);
```

Что выведет программа при вызове F(9)? В ответе запишите последовательность выведенных цифр слитно (без пробелов).

Исполним алгоритм для указанного аргумента.

Команда алгоритма	Результат исполнения	Вывод	Примечание		
вывод n	вывод «9»	9			
если n >= 7 <u>то</u>	9 ≥7, истина				
F(n - 3)	вывов F(6)		1 уровень рекурсии		
вывод n	вывод «б»	6			
<u>если</u> n >= 7 <u>то</u>	6 ≥7, ложь		возврат в F(9)		
F(n - 1)	вывов F(8)		1 уровень рекурсии		
вывод n	вывод «8»	8			
<u>если</u> n >= 7 <u>то</u>	8 ≥7, истина				
F(n - 3) вывов F(5)			2 уровень рекурсии		
вывод n	вывод «5»	5			
если n >= 7 <u>то</u>	5 ≥7, ложь		возврат в F(8)		
F(n - 1)	вывов F(7)		2 уровень рекурсии		
вывод n	вывод «7»	7			
<u>если</u> n >= 7 <u>то</u>	7 ≥7, истина				
F(n - 3)	вывов F(4)		3 уровень рекурсии		
вывод n	вывод «4»	4			
<u>если</u> n >= 7 <u>то</u>	4 ≥7, ложь		возврат в F(7)		
F(n - 1)	вывов F(6)		3 уровень рекурсии		
вывод n	вывод «б»	6			
если n >= 7 <u>то</u>	6 ≥7, ложь		возврат в F(7)		
кон			возврат в F(8)		
кон			возврат в F(9)		
кон			завершение алгоритма		

Ответ: 9685746

Задание 11.2

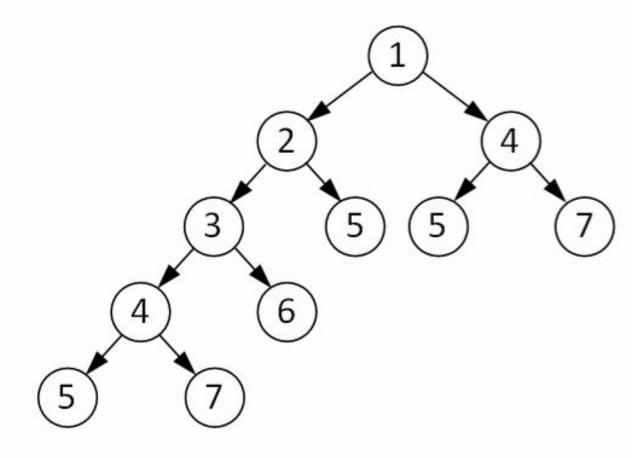
Ниже на пяти языках программирования записаны две рекурсивные функции (процедуры): F и G.

Алгоритмический язык	Паскаль
алг F(цел n)	procedure F(n: integer); forward;
нач	procedure G(n: integer); forward;
если n > 0 то	
G(n - 1)	procedure F(n: integer);
все	begin
кон	if n > 0 then
	G(n - 1);
<u>алг</u> G(<u>цел</u> n)	end;
нач	
вывод "*"	procedure G(n: integer);
<u>если</u> n > 1 <u>то</u>	begin
F(n - 2)	writeln('*');
все	if n > 1 then
кон	F(n - 2);
	end;

Сколько символов «звёздочка» будет напечатано на экране при выполнении вызова F(11)?

Команда алгоритма	Результат исполнения	Вывод	Примечание	
если n > 0 то	11 >0, истина		выполняется F(11)	
G(n - 1)	вызов G(10)			
вывод "+"	вывод «*»	*	выполняется G(10)	
<u>если</u> n > 1 <u>то</u>	10 >1, истина			
F(n - 2)	вызов F(8)			
если n > 0 то	8>0, истина		выполняется F(8)	
G(n - 1)	вызов G(7)			
вывод "*"	вывод «*»	*	выполняется G(7)	
<u>если</u> n > 1 <u>то</u>	7 > 1, истина			
F(n - 2)	вызов F(5)			
<u>если</u> n > 0 <u>то</u>	5 >0, истина		выполняется F(5)	
G(n - 1)	вызов G(4)			
вывод "*"	вывод «*»	*	выполняется G(4)	
<u>если</u> n > 1 <u>то</u>	4 > 1, истина			
F(n - 2)	вызов F(2)			
<u>если</u> n > 0 <u>то</u>	2 >0, истина		выполняется F(2)	
G(n - 1)	вызов G(1)			
вывод "*"	вывод «*»	*	выполняется G(1)	
если n > 1 то	1 > 1, ложь			
кон			завершение G(1)	
кон			завершение F(2)	
кон			завершение G(4)	
кон			завершение F(5)	
кон			завершение G(7)	
кон			завершение F(8)	
кон			завершение G(10)	
кон			завершение F(11)	

Таким образом, символ «звёздочка» будет напечатан 4 раза. Ответ: 4


Решение:

- 1) заметим, что каждая функция вызывает другую (это называется косвенная рекурсия), причём только один раз
- 2) вот цепочка вызовов: $F(11) \to G(10) \to F(8) \to G(7) \to F(5) \to G(4) \to F(2) \to G(1)$
- 3) за один вызов функции G выводится одна звёздочка, внутри функции F звездочки не выводятся, поэтому за 4 вызова G будет выведено 4 звездочки
- 4) Ответ: <mark>4</mark>.

Ещё пример задания:

```
P-05. Дан рекурсивный алгоритм:
procedure F(n: integer);
begin
writeln(n);
if n < 5 then begin
F(n + 1);
F(n + 3)
end
end;
```

Найдите сумму чисел, которые будут выведены при вызове F(1).

складывая все эти числа, получаем 49 ответ: 49.

Решение (вариант 2, подстановка):

1) можно обойтись и без дерева, учитывая, что при каждом вызове с n < 5 происходит два рекурсивных вызова; сумму чисел, полученных при вызове F(n), обозначим через S(n):

$$S(n) = \begin{cases} n + S(n+1) + S(n+3), & n < 5 \\ n, & n \ge 5 \end{cases}$$

2) выполняем вычисления:

$$S(1) = 1 + S(2) + S(4)$$

$$S(2) = 2 + S(3) + S(5) = 7 + S(3)$$

$$S(3) = 3 + S(4) + S(6) = 9 + S(4)$$

$$S(4) = 4 + S(5) + S(7) = 16$$

3) теперь остаётся вычислить ответ «обратным ходом»:

$$S(3) = 9 + 16 = 25$$

4)
$$S(2) = 7 + 25 = 32$$

 $S(1) = 1 + 32 + 16 = 49$

5) Ответ: 49.

```
P-04. Дан рекурсивный алгоритм:

procedure F(n: integer);

begin

writeln(n);

if n < 6 then begin

F(n+2);

F(n*3)

end
end;
```

Найдите сумму чисел, которые будут выведены при вызове F(1).

Решение (вариант 1, метод подстановки):

- сначала определим рекуррентную формулу; обозначим через G(n) сумму чисел, которая выводится при вызове F(n)
- 2) при n >= 6 процедура выводит число n и заканчивает работу без рекурсивных вызовов: $G(n) = n \frac{npu}{n} >= 6$
- 3) при n < 6 процедура выводит число n и дважды вызывает сама себя: G(n) = n + G(n+2) + G(3n) при n < 6
- 4) в результате вызова F(1) получаем G(1) = 1 + G(3) + G(3) G(3) = 3 + G(5) + G(9) = 3 + G(5) + 9 G(5) = 5 + G(7) + G(15) = 5 + 7 + 15 = 27
- 5) используем обратную подстановку: G(3) = 3 + G(5) + 9 = 3 + 27 + 9 = 39 G(1) = 1 + 2*G(3) = 79
- 6) Ответ: 79.

Ещё пример задания:

P-01. Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

$$F(1) = 1$$

 $F(n) = F(n-1) * n, при n > 1$

Чему равно значение функции F(5)?

В ответе запишите только целое число.

Решение:

- 1) используя заданную рекуррентную формулу, находим, что F(5) = F(4) * 5
- применив формулу еще несколько раз, получаем
 F(5) = F(3) * 4 * 5 = F(2) * 3 * 4 * 5 = F(1) * 2 * 3 * 4 * 5
- мы дошли до базового случая, который останавливает рекурсию, так как определяет значение F(1) = 1
- 4) окончательно F(5) = 1 * 2 * 3 * 4 * 5 = 120
- 5) ответ: <mark>120</mark>.

Пример задания:

```
P-03. Дан рекурсивный алгоритм:

procedure F(n: integer);

begin

writeln('*');

if n > 0 then begin

F(n-2);

F(n div 2)

end

end;
```

Сколько символов "звездочка" будет напечатано на экране при выполнении вызова F(7)?

Решение (вариант 1, составление полной таблицы):

- 1) сначала определим рекуррентную формулу; обозначим через G(n) количество звездочек, которые выводит программа при вызове F(n)
- 2) из программы видим, что

$$G(n) = 1 + G(n-2) + G(n \text{ div } 2) \frac{\pi p u}{n} n > 0$$

- 3) вспомним, что n div 2 это частное от деления n на 2
- 4) по этим формулам заполняем таблицу, начиная с нуля:

$$G(0) = 1$$

$$G(1) = 1 + G(-1) + G(0) = 1 + 1 + 1 = 3$$

$$G(2) = 1 + G(0) + G(1) = 1 + 1 + 3 = 5$$

$$G(3) = 1 + G(1) + G(1) = 1 + 3 + 3 = 7$$

$$G(4) = 1 + G(2) + G(2) = 1 + 5 + 5 = 11$$

$$G(5) = 1 + G(3) + G(2) = 1 + 7 + 5 = 13$$

$$G(6) = 1 + G(4) + G(3) = 1 + 11 + 7 = 19$$

$$G(7) = 1 + G(5) + G(3) = 1 + 13 + 7 = 21$$

n	0	1	2	3	4	5	6	7
G(n)	1	3	5	7	11	13	19	21

5) Ответ: 21.