THE FORMAL NORMAL FORM DEGENERATE SINGULAR POINTS IN THE CASE OF CASE OF FOCUS

Tasmukhametova Aliya Bazarbaevna scientific adviser: Voronin Sergey Mikhaylovich

OBJECTIVE

• In the work we study the problem for the case $\lambda \notin \mathbb{R}, r = 2$. Have a normal form $(V_H + x^p \varphi(x) E_H) \cdot (1 + x^q \phi(x)),$

where $E_H = (x, 2y), V_H = (y + (1 + \lambda)x^2, -2\lambda x^2),$ Formal normal form takes the form

$$(y+(1+\lambda)x^2+x^2\varphi(x),-2\lambda x^2+2xy\varphi(x))\cdot(1+\phi(x)),$$

AIM OF WORK

• The direct study of a formal normal form with the feature type Bogdanov-Takens for a particular case, for the purpose of comparison with the results of Zolondek-Strozhinoi.

PREFACE

 Takens in 1974 for the system of equations of the form

$$\dot{x} = y + ..., \quad \dot{y} = ...$$

got a fairly simple formal normal form

$$\dot{x} = y + a(x), \dot{y} = b(x)$$

but this formal normal form admits of further simplification.

 General(for all cases) the formal normal form was obtained in 2015.
 This Form looks very complicated and has the form:

$$(V_H + x^p \varphi(x) E_H) \cdot (1 + x^q \psi(x))$$

THEOREM

• The field V (для случая $\lambda \notin \mathbb{Q}$) is formally equivalent to one of the following fields

$$N_{p;q}^{r;\lambda}: (V_H + x^p \varphi(x) E_H) \cdot (1 + x^q \psi(x)),$$
 где $r-1 и $\varphi = \sum_{i \in \mathbb{Z}_+/I_{1+p}} a_i x^i, \psi = \sum_{i \in \mathbb{Z}_+/I_{1+q}} b_j x^j,$$

formal power series. Forms **N**; are the only modulo substitutions

$$(x, y) \longrightarrow (\alpha x, \alpha y), \alpha^{r-1} = 1...$$

DEFINITION

• Two analytical vector fields V, V_0 in $(\mathbb{C}^2; 0)$ are formally equivalent, then and only then when there is a formal diffeomorphisms $H \in (\mathbb{C}^2; 0)$

$$H'\cdot V=V_0\circ H$$

$$H' \cdot V = V_0 \circ H$$

$$H(x,y)=(x+\sum c_{ij}x^iy^j,y+\sum d_{ij}x^iy^j)$$

$$V=(y+(1+\lambda)x^2+\sum a_{ij}x^iy^j,-2\lambda x^2+\sum b_{ij}x^iy^j)$$

$$\mathsf{V}_0 = (y + (1+\lambda)x^2 + \sum \widetilde{a_{ij}}x^iy^j, -2\lambda x^2 + \sum \widetilde{b_{ij}}x^iy^j)$$

Objective :to find a formal normal form as simple as possible species

• We substitute the expansions H, V, V_0 in the main equation :

$$\begin{pmatrix} (1+2c_{20}x+c_{11}y++...)(y+(1+\lambda)x^{2}+a_{11}xy+...)+\\ +(c_{11}x+2c_{02}y+c_{21}x^{2}++...)((-2\lambda)x^{2}+b_{11}xy+...)\\ (2d_{20}x+d_{11}x+3d_{30}x^{2}+...)(y+(y+(1+\lambda)x^{2}++...)+\\ +(1+d_{11}x+2d_{02}y+d_{21}x^{2}+...))((-2\lambda)x^{2}+b_{11}xy+...) \end{pmatrix}$$

$$\begin{pmatrix} (y+d_{20}x^{2}+...)+(1+\lambda)(x^{2}+c_{20}^{2}x^{4}+...)\\ -2\lambda(x^{2}+c_{20}^{2}x^{4}+...) \end{pmatrix}$$

9

	c_{20}	C ₁₁	c_{02}	c_{30}	c_{21}	c_{12}	c ₀₃	d_{20}	d_{11}	d_{02}	d_{30}	d_{21}	d_{12}	d_{03}	
1(2,0)								-1							
1(1,1)	2								-1						0 - 60 61 - 63
1(0, 2)		1								-1					
1(3,0)		-2λ									-1				
1(2,1)	$2a_{11}$	$b_{20}-$	-4λ	3								-1			9 (9)
		$-\mu$	3												8
1(1,2)	$2a_{02}$	a ₁₁ +	2(b ₁₁ -		2								-1		0
	5	$+b_{02}$	$-\mu$)									8			(T - 8)
1(0,3)		a_{02}	$2b_{02}$, .		1								-1	
2(2,0)															
2(1, 1)								2							2 - 33 9 - 33
2(0, 2)									1						
2(3,0)	4λ	9						2μ	-2λ						8 93

tab1.

INFERENCE

 After we solve this system of equations the formal normal form takes the form

$$\begin{cases} \dot{x} = y + (1 + \lambda)x^{2} \\ \dot{y} = -2\lambda x^{2} + \sum \alpha_{k} x^{3k} + \sum \beta_{k} y x^{3k} + \sum \gamma_{k} x^{3k+1} \\ \dot{x} = -2\lambda x^{2} + \sum \alpha_{k} x^{3k} + \sum \beta_{k} y x^{3k} + \sum \gamma_{k} x^{3k+1} \\ \dot{x} = 1, \dots \end{cases}$$

We have 3 adjacent degree - 3 monoms from a formal normal form. Thus, our result is consistent with the result of Zolondek-Strozhinoi.

REFERENCES

Formal normal form Zholandeka Strozhinoy– PWS Publishing, 1997

Thank you for attention!

