

Кафедра надзорной деятельности

Тема дипломного проекта:

«Расчет фактического предела огнестойкости строительных конструкций здания автотехцентра «Орион» г. Красноярска»

Выполнил:

Слушатель 51 учебной группы младший лейтенант внутренней службы

Руководитель:

Начальник кафедры надзорной деятельности, к.т.н. майор внутренней службы Грицких Степан Владимирович

Цель дипломного проекта

Цель работы: определение фактических пределов огнестойкости конструкций здания автотехцентра, и разработка предложений по обоснованию обеспечения необходимого и достаточного предела огнестойкости строительных конструкций здания автотехцентра «Орион».

Актуальность дипломного проекта

Актуальность проекта связана с тенденциями в современном строительстве, направленными на расширение площадей застройки, увеличение этажности зданий. Вследствие этого возникают проблемные вопросы с применением требований нормативных документов при проектировании и строительстве объектов в части объема мероприятий направленных на повышение фактических пределов огнестойкости конструкций.

Задачи дипломной работы

Для достижения поставленной цели необходимо выполнить ряд задач:

- изучить характеристику здания, проанализировать соответствие строительных конструкций требованиям нормативных документов;
- рассмотреть возможные методы определения фактических пределов огнестойкости;
- определить фактические пределы огнестойкости строительных конструкций здания автотехцентра, в том числе с учетом воздействия опасных факторов возможного пожара;
- провести анализ результатов и выяснить экономическую целесообразность применения результатов исследования.

Подходы к определению фактических пределов огнестойкости

Натурные испытания

Подходы к определению фактических пределов огнестойкости

Определение с помощью справочных данных

ЦНИИСК им. Кучеренко Госстроя СССР

Пособие

по определению пределов огнестойкости конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов (к СНиП II-2-80)

Москва 1985

Таблица 11

№ п. п.	Краткая характеристика конструкций	Схема конструкции (сечение)	Размеры, см	Предел огнестой- кости, ч	Предельное состояние по огнестойкости (см. п. 2.4)
1	2	3	- 4	5	6
1	Стальные балки, прогоны, ригели и статически определимые фермы, при опирании плит и настилов по верхнему поясу, а также колонны и стойки без огнезащиты с приведенной толщиной металла t_{red} , указанной в графе 4		$\begin{array}{c} t_{\rm r\acute{e}d} = 0.3 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 3 \end{array}$	0,12 0,15 0,25 0,3 0,35 0,45	I
2	Стальные балки, прогоны, ригели и статически определимые фермы при опирании плит и настилов на нижние пояса и полки конструкции с толщиной металла <i>t</i> нижнего пояса, указанной в графе 4		t=0,5 1 1,5 2 2,5 3	0,3 0,35 0,45 0,50 0,55 0,6 0,7	I
3	Стальные балки перекрытий и конструкций лестниц при огнезащите по сетке слоем бетона или штукатурки	t a south and b V Camma	a=1 2 3	0,7 0,75 1,5 2,5	IV

Подходы к определению фактических пределов огнестойкости

Расчетный метод определения пределов огнестойкости

Материал - С255

Усилие - Nn = 760 кН

Условия обогрева - с 3 сторон

Нормативное сопротивление R_{vn} 120 МПа

Определение характеристики балки:

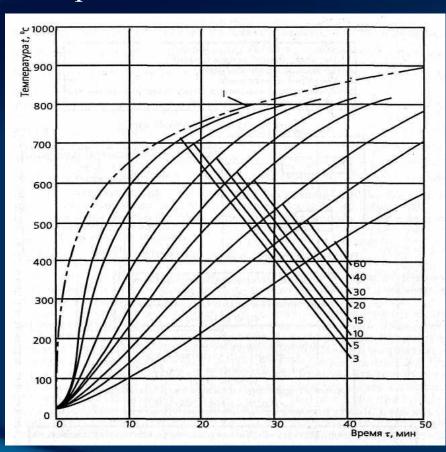
Площадь сечения А=11080 мм2

Высота сечения h=298 мм

Ширина полки b=299 мм

Толщина стенки s=9 мм

Определение степени нагруженности стержня:

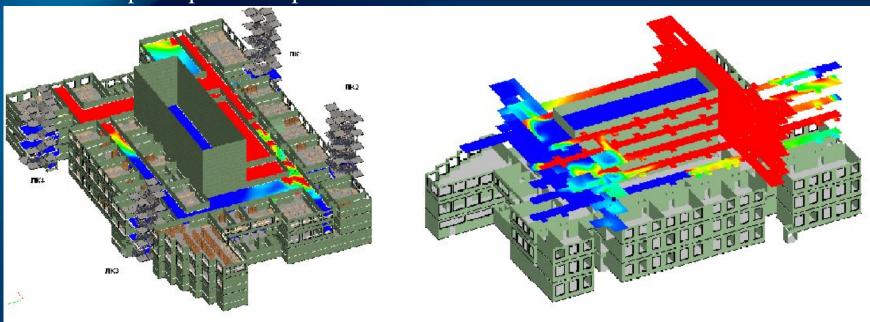

$$\gamma_{tem} = \frac{N_n}{AR_{yn}} = \frac{760 \cdot 10^3}{110,8 \cdot 10^{-4} \cdot 120 \cdot 10^6} = 0,572$$

Определение критической температуры:

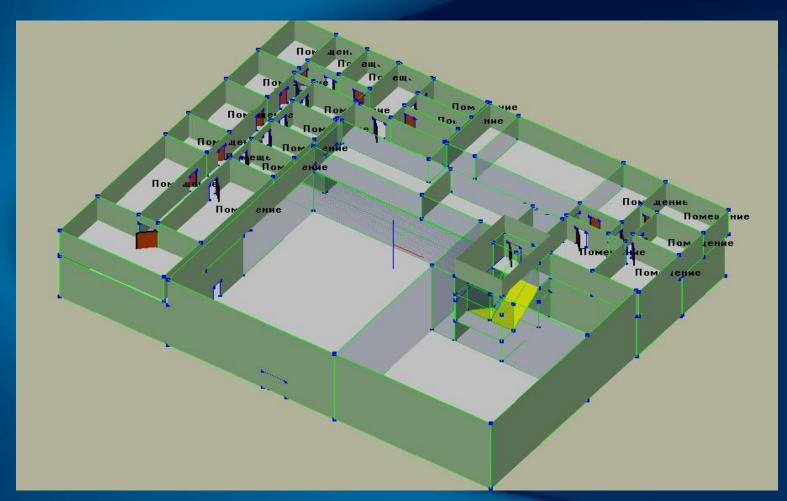
$$t_{cr}$$
=750-440 γ_{tem} =750-440·0,572=498,32°C

Определение приведённой толщины металла:

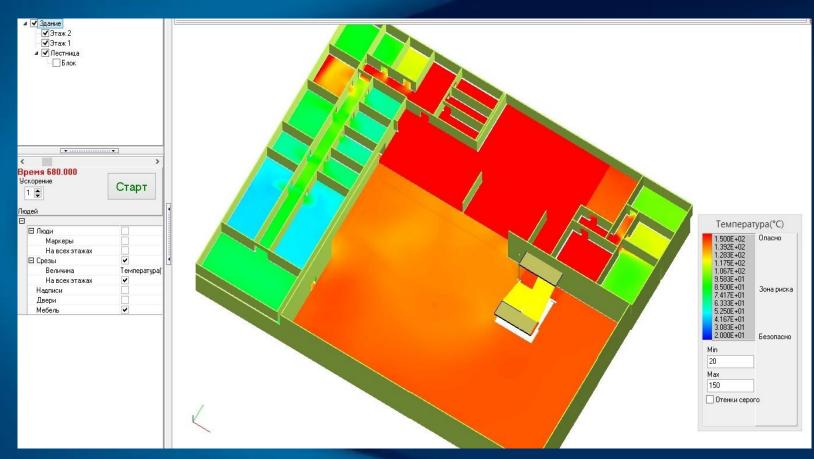
$$t_{red} = \frac{A}{2h + 3b - 2s} = \frac{11080}{1475} = 7,51 \text{ MM}$$



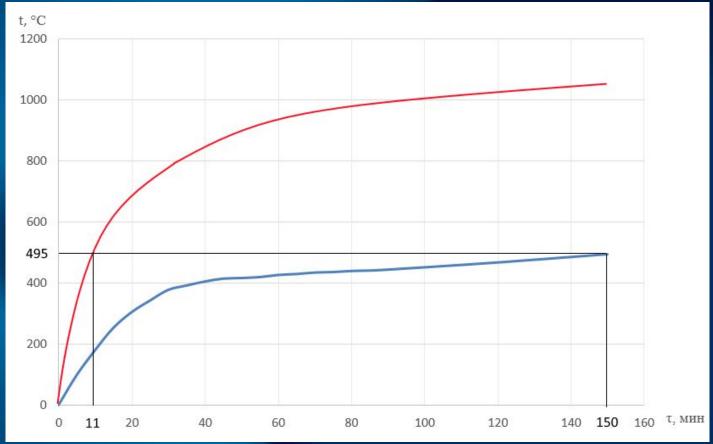
Использование моделирования при определении пределов огнестойкости конструкций


В настоящее время современные технологии позволяют проводить расчеты с использованием различных программных комплексов. В дипломном проекте использована программа «Сигма-ПБ» российской разработки, позволяющая построить модель здания и провести расчет опасных факторов пожара.

Создание модели здания в программном комплексе «Сигма-ПБ»



Визуализация результатов расчетов



Сравнение температурных режимов стандартного пожара и смоделированного

--- Стандартный температурный режим --- Температурный режим смоделированного пожара

Результаты исследования

При использовании стандартизированных подходов к определению пределов огнестойкости строительных конструкций и методов с использованием вычислительной техники были получены результаты, отличные друг от друга, показывающие что при моделируемом температурном режиме конструкции здания автотехцентра сохранят свои свойства в течение 2,5 часов.

Принимая во внимание полученные данные экономия средств при проведении мероприятий по пожарной безопасности может составить ориентировочно 230 тысяч рублей.

Выводы

По результатам проведенного исследования и расчетов была доказана применимость предлагаемого метода определения фактических пределов огнестойкости строительных конструкций, а также его экономическая эффективность при сохраняемом уровне безопасности людей при пожаре на примере здания автотехцентра «Орион» г. Красноярска.

Кафедра надзорной деятельности

Тема дипломного проекта:

«Расчет фактического предела огнестойкости строительных конструкций здания автотехцентра «Орион» г. Красноярска»

Выполнил:

Слушатель 51 учебной группы младший лейтенант внутренней службы

Руководитель:

Начальник кафедры надзорной деятельности, к.т.н. майор внутренней службы Грицких Степан Владимирович