

Дисциплина: Силовые преобразователи энергии

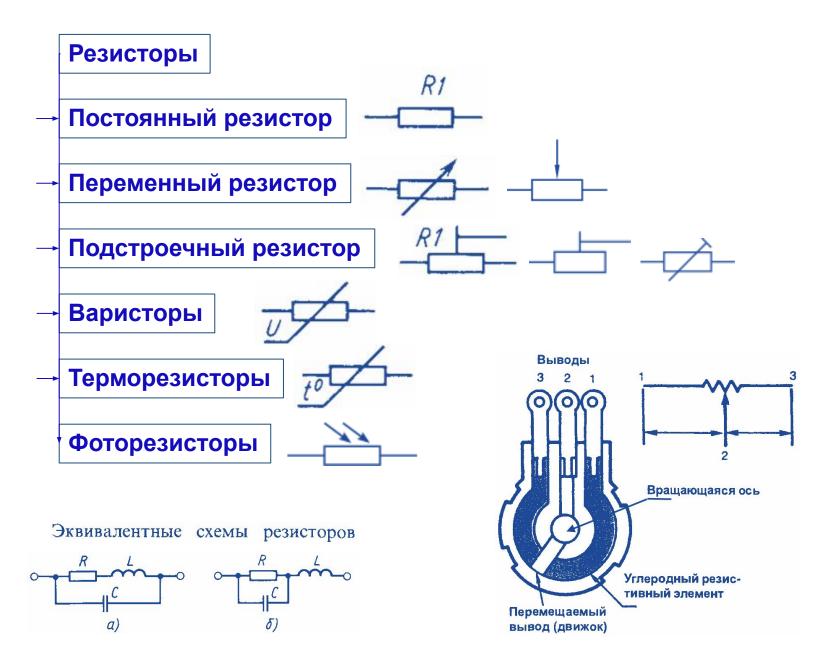
Тема: Основные сведения о силовых электронных приборах.

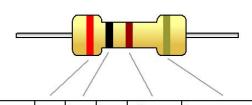
Лекция № 1

Лектор: Балгаев Н.Е.

E-mail: <u>aurum198322@gmail.com</u>

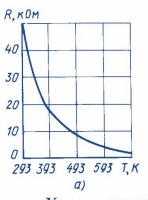
ПЛАН ЛЕКЦИИ

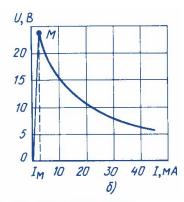

- 1. Компоненты электронных приборов;
- 2. Пассивные компоненты;
- 3. Электропроводность полупроводников;
- 4. Основные свойства и характеристики полупроводников;
- 5. Электрические переходы;
- 6. Особенности реальных р-п переходов;
- 7. Контрольные задания.



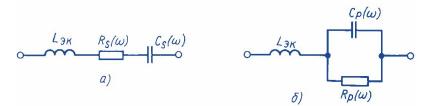
1. Компоненты электронных приборов



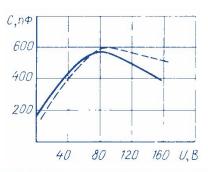




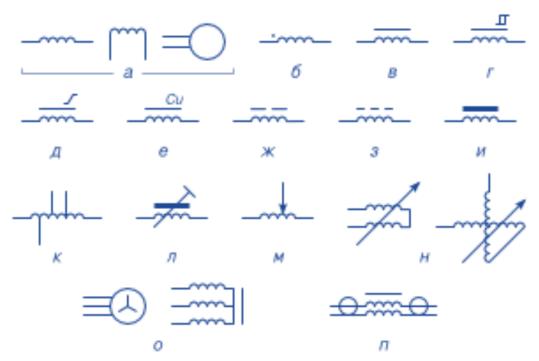
Цвет	1 полоса	2 полоса	3 полоса	Множитель	Допустимое отклонение	
Черный	0	0	0	1Ω		
Коричневый		1		10Ω	± 1%	(F)
Красный	2	2	2	100Ω	± 2%	
Оранжевый	3	3	3	1ΚΩ		
Желтый	4	4	4	10KΩ		
Зеленый	5	5	5	100KΩ	±0.5%	(D)
Синий	6	6	6	1ΜΩ	±0.25%	(C)
Фиолетовый	7	7	7	10ΜΩ	±0.10%	(B)
Серый	8	8	8		±0.05%	
Белый	9	9	9			
Золотой			- 8	0.1	± 5%	(0)
Серебряный	BEAM	-ROBO	T.RU	0.01	± 10%	(K)



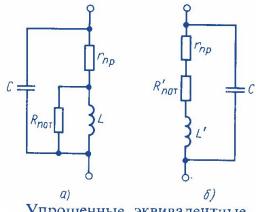
Характеристики терморезистора: a—температурная; δ —вольт-амперная



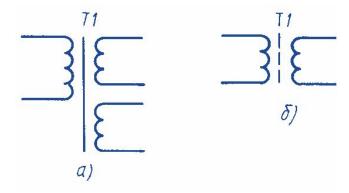
Эквивалентные схемы конденсатора



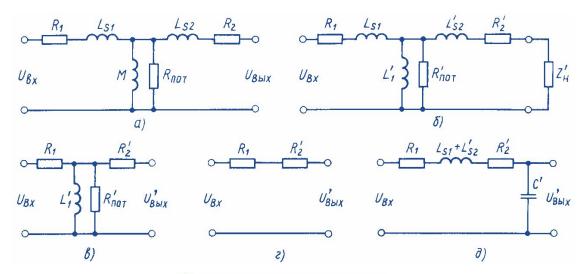
Зависимость емкости варикондов от напряжения



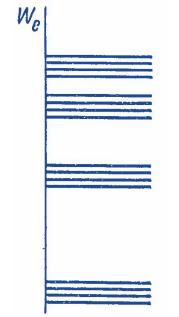
3) Катушки индуктивности


- а) общее обозначение (различные формы); б) с обозначением начала обмотки; с различными видами сердечника:
- в) ферромагнитным (дроссель), [г) с прямоугольной петлёй гистерезиса, д) с непрямоугольной петлёй гистерезиса],
- е) из немагнитного материала (для примера, из меди),
- ж) с зазором, з) магнитодиэлектрическим, и) ферритовым;
- к) катушка индуктивности с отводами; л) с подстраиваемым ферритовым сердечником; м) со скользящим контактом; н) вариометр; дроссель: о) трёхфазный с соединением обмоток звездой; п) коаксиальный.

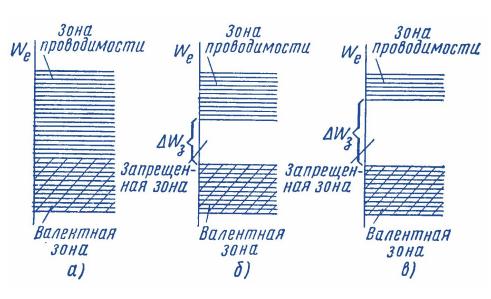
Упрощенные эквивалентные схемы катушек индуктивности

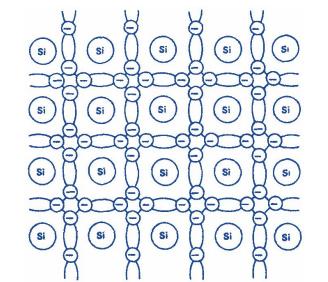


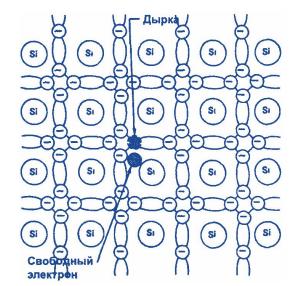
4) Трансформаторы электронной аппаратуры

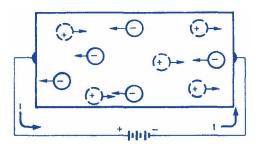


Эквивалентные схемы:

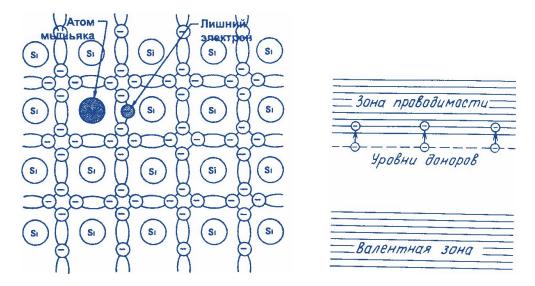

a—трансформатора; δ —приведенного трансформатора; δ —для областей низких частот; ϵ —средних; δ —высоких частот;

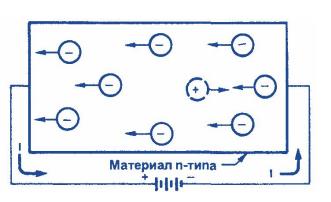

3. Электропроводность полупроводников

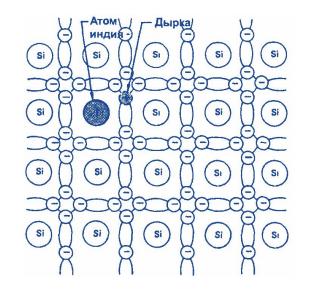



Энергетическая диаграмма группы (четырех) близко расположенных атомов

Энергетическая диаграмма металла (а), полупроводника (б) и диэлектрика (в)

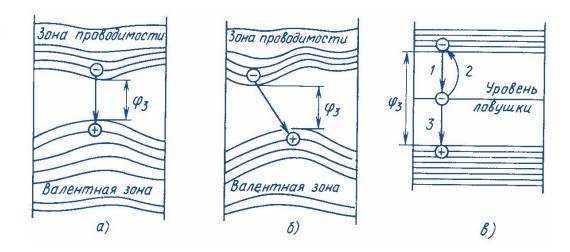



Ток в чисто полупроводниковом материале.



3. Электропроводность полупроводников

Примесная электропроводность.



4. Основные свойства и характеристики полупроводников

Уровень Ферми, температурный потенциал.

$$n = N_c e^{-(E_c - E_F)/(kT)},$$
 $p = N_v e^{-(E_F - E_v)/(kT)},$ $N_c = 2\left(\frac{2\pi m_v^* kT}{h^2}\right)^{3/2}$ $N_v = 2\left(\frac{2\pi m_v^* kT}{h^2}\right)$

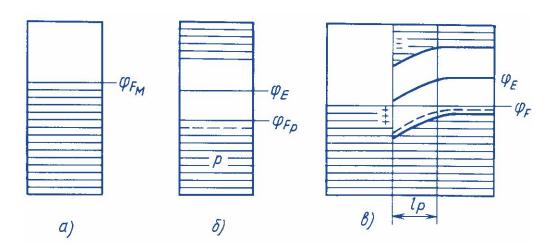
Концентрация носителей зарядов.

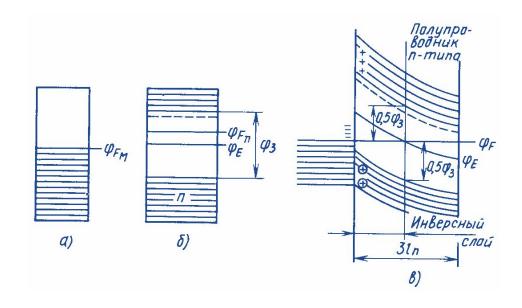
Уравнения непрерывности.

$$n = n_0 + \Delta n(0); \quad p = p_0 + \Delta p(0),$$

$$\frac{\partial n}{\partial t} = n\mu_n \frac{\partial E}{\partial x}; \quad \frac{\partial p}{\partial t} = -p\mu_p \frac{\partial E}{\partial x}.$$

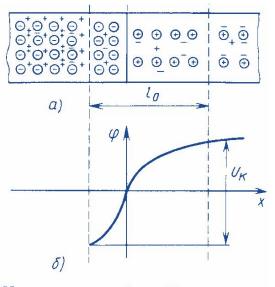
$$\Delta p - \Delta n = \left[\Delta p(0) - \Delta n(0)\right] e^{-t/\tau_{\varepsilon}},$$


$$\tau_{\varepsilon} = \frac{\varepsilon_0 \varepsilon}{q(n_0 \mu_n + p_0 \mu_p)}$$


$$\tau_{\varepsilon} = \frac{\varepsilon_0 \varepsilon}{q \left(n_0 \mu_n + p_0 \mu_p \right)}$$

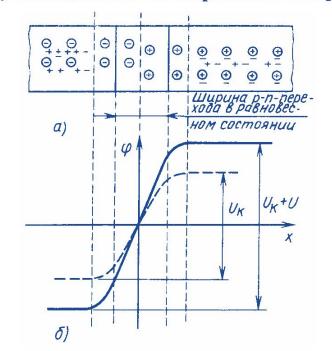
5. Электрические переходы

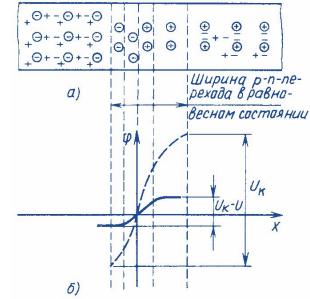
Контакт металл — полупроводник.



5. Электрические переходы

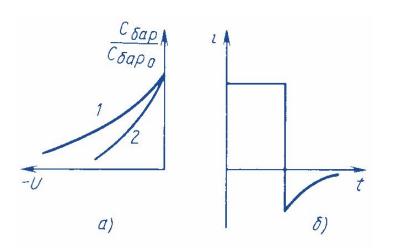
Контакт двух полупроводников р- и п-типов.


р-п-переход смещен в прямом направлении

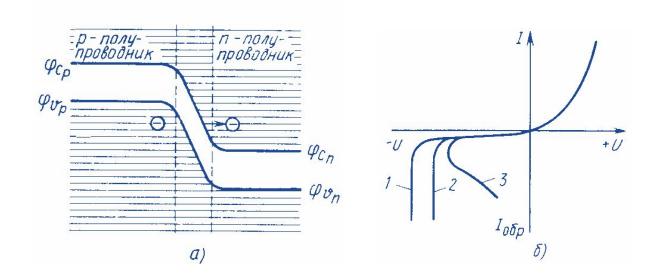

Свойства несимметричного р-п-перехода.

Несимметричный р-п-переход:

Переход, смещенный в обратном направлении.



6. Особенности реальных р-п переходов


Емкости р-п-перехода.

$i = \frac{\mathrm{d} Q_{\text{nep}}}{\mathrm{d}_t} = C_{\text{fap}} \frac{\mathrm{d} U}{\mathrm{d} t},$

$$C_{\text{fap}} = \frac{\varepsilon \varepsilon_0 S}{t_0} \sqrt{\frac{U_{\kappa}}{U_{\kappa} + |U|}},$$

Пробой р-п-перехода.

SATBAYEV UNIVERSITY

7. Контрольные задания

Ответьте на следующие вопросы:

- 1. Что делает кремний более желательным для использования, чем германий?
- 2. Почему при образовании полупроводниковых материалов важна ковалентная связь?
- 3. Опишите, как перемещаются электроны в образце чистого кремния при комнатной температуре?
- 4. Опишите процесс превращения образца чистого кремния в полупроводник п-типа.
- 5. Опишите, что случится в образце полупроводника птипа, когда к нему будет приложено напряжение?