Повышение эффективности блока комплексной очистки ВРУ.

Выполнил: Нитченко К.А. студент группы ТЭ-14-1

РУКОВОДИТЕЛЬ:ШАРАПОВ А.И.

Цель работы

• Исследовать работу кожухотрубчатого теплообменного аппарата.

• Поиск альтернативы для сокращения расхода энергоресурсов.

 Расчет экономической выгоды для производства.

Постановка задачи

• Составление теплового баланса.

• Произвести конструктивный расчет.

• Произвести поверочный расчет.

Кожухотрубчатый теплообменный аппарат

Картинка (схема ТА)

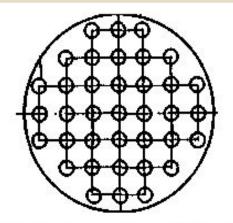
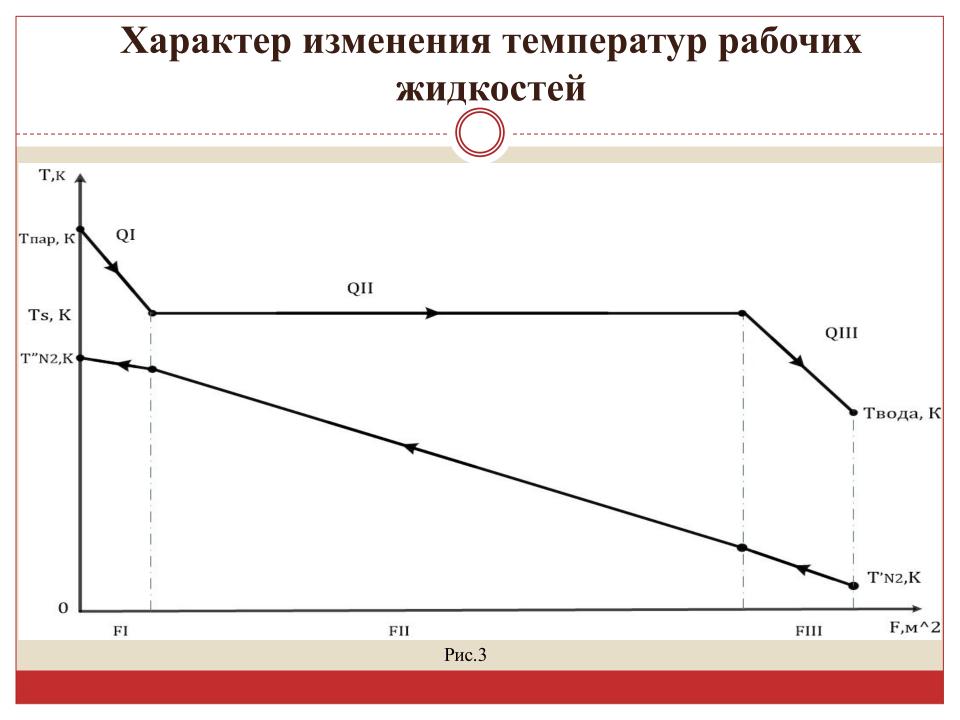



Рис.2 Размещение труб в трубной решетке (по вершинам квадрата)

нис. 2 назмещение труо в труонои решетке (по вершинам квадрата)

Тепловой баланс ТА.

• Первый теплоноситель

• Участок FI (уч. охл. пара)

$$QI=D_{nap}\cdot (I_{n.n}-I_s)$$

• Участок FII (уч. конденсации)

$$QII=D_{nap} \cdot r$$

r- скрытая теплота парообразования [кДж/кг]

• Участок FIII (уч. охл. конденсата)

QIII=
$$D_{\text{пар}} \cdot c_{\text{конд}} \cdot (T_s - T_{\text{конд}})$$

$$\sum Q = QI + QII + QIII$$

Второй теплоноситель

• Участок FI (нагрев N2)

$$QI=D_{N2} \cdot c_{N2} \cdot (T_1 - T'_{N2})$$

• Участок FII (нагрев N2)

$$QII=D_{N2} \cdot c_{N2} \cdot (T_2-T_1)$$

• Участок FIII (нагрев N2)

$$QIII = D_{N2} \cdot c_{N2} \cdot (T''_{N2} - T_2)$$

$$\sum Q_{N2} = QI + QII + QIII$$

Поверочный расчет

	Участок FI (пер.пар)					
N	lu	$\alpha B_T/M^2 \cdot K$				
777,	,905	862068,970	0,650	1212,287		

Участок FII (нас.пар)						
λ Вт/м∙К	ρs кг/м^3	μ Па∙с	α Bτ/м^2·K			
0,665	866,380	141,22·10^-6	15873,750			

Участок FI (N2)						
Nu Re Pr α Bτ/м^2						
28,563	10243,903	0,670	50,053			

Участок FII (N2)						
Nu	Nu Re Pr α Bτ/м^2·F					
37,757	14358,970	0,684	56,636			

Участок FIII (конденсат)						
Nu Re Pr α Bτ/м^2·K						
266,610	64766,840	1,049	8211,600			

Участок FII (N2)						
Nu Re Pr α Bτ/м^2·K						
54,570	22400,000	0,700	63,140			

При расчетах принимались рекомендуемые скорости течения теплоносителей: $W_{\text{пар}} = 50\text{m/c}; \ W_{\text{N2}} = 16\text{m/c};$

Конструктивный расчет

 $F_i = \pi \cdot d_{cp} \cdot l_i \cdot n$ – площадь поверхности нагрева [м^2]; $l_i = \frac{Q_i}{k \cdot n \cdot \Delta t}$ -длина трубы [м];

Участок FI							
k , Вт/м^2·К	k, $Bt/m^2\cdot K$ Δt , K n , $IIIT$ dcp , M F , m^2 l , M						
3,184	60,287	2058,000	0,023	42,21	0,285		

	Участок FII							
k , B _T / _M ^2·K	Δt	n, шт	d cp, м	F, м^2	1, м			
3,716	88,486	2058,000	0,023	358,195	2,410			

Участок FIII							
k , Bt/m^2·K	k, $B_T/M^2 \cdot K$ Δt n, $IIIT$ dcp, M F , M^2 1, M						
4,126	106,183	2058,000	0,023	67,77	0,456		

$$\Sigma 1 = 1_{\text{I}} + 1_{\text{II}} + 1_{\text{III}} = 0,284 + 2,41 + 0,456 = 3,15 \text{M}$$

$$\Sigma F = F_I + F_{II} + F_{III} = 42,21 + 358,195 + 67,77 = 468,175 \text{ m}^2$$