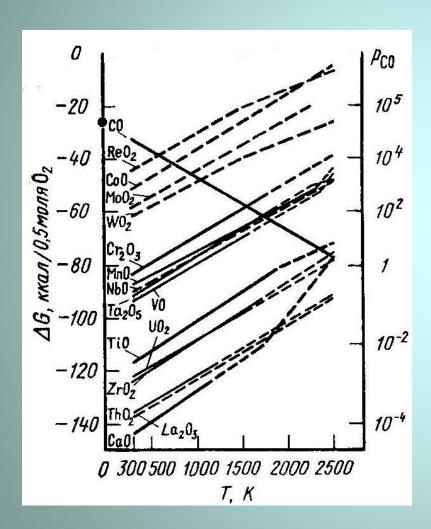
ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ ПОРОШКОВ МЕТАЛЛОВ

Получение порошков металлов методами восстановления


Физико-химические основы процессов восстановления

- Восстановление оксидов
 - $2Me + O_2 = 2MeO(1)$
 - $2X + O_2 = 2XO(2)$
 - $|\Delta G_2| > |\Delta G_1|$
 - MeO +X → Me + XO
 - ∆G<0
- W, Fe, Mo, Cr, Nb, Mn, Si, Ti, Zr, Mg, Al, Ca

Восстановление оксидов

- 1. Восстановление металлами (Mg, Al, Ca)
- 2. Восстановление углеродом
- 3. Восстановление водородом

Зависимость ΔG реакции восстановления оксидов от температуры

• MeO + C = Me + CO

Преимущества способа восстановления

- Низкая стоимость процессов восстановления углеродом;
- Хорошая контролируемость размеров частиц (оксиды обычно хрупки, легко измельчаются и просеиваются);
- Получение пористых частиц, которые легко прессуются;
- Возможность применения как для мелкого так и крупного производства, в непрерывном или периодическом режиме;

Недостатки способа восстановления

- Высокая стоимость восстановления чистыми газами;
- В некоторых случаях большая потребность в газе восстановителе при ограниченных масштабах его производства;
- Чистота конечного продукта обычно полностью зависит от чистоты сырья;
- За некоторыми исключениями процессы восстановления непригодны для производства порошков сплавов;

Восстановление галогенидов

- $MeCl_x + x/2 H_2 \rightarrow Me + x HCl$
- Исходное сырье: хлориды и фториды железа, вольфрама, молибдена, ниобия, тантала, титана, циркония

Типы восстановителей

- газообразные (H₂, CO и газы, содержащие CO и H₂ - генераторный, природный конвертированный, водяной, коксовый, доменный газ, диссоциированный аммиак);
- - твердый углерод в виде сажи, антрацит;
- - жидкие металлы (натрий, кальций, магний) или их соединения, например гидрид кальция и др.;
- комбинированный твердый и газообразный одновременно

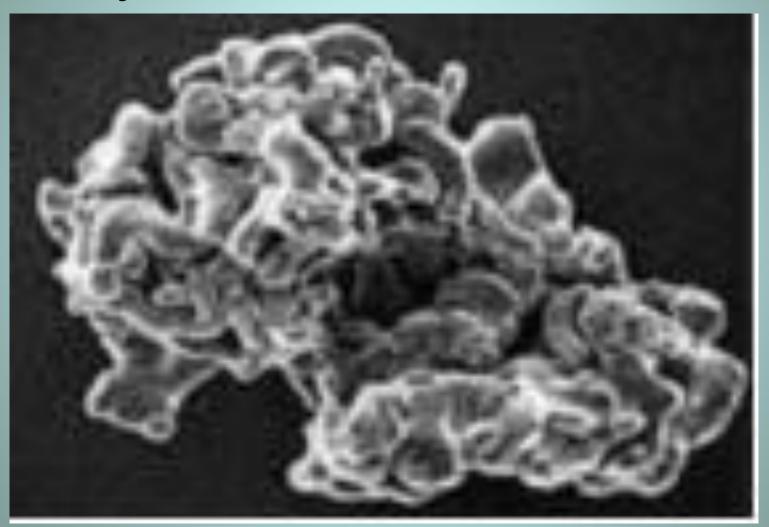
Получение порошка железа

- оксидное сырье
- 1. Прокатная окалина. Окалина состоит из Fe_3O_4 , и Fe_2O_3 с общим содержанием железа около 72 %.
- 2. Высокообогащенный концентрат природных окисленных железных руд с содержанием железа около 71% в виде гематита (Fe_2O_3) и магнетита (Fe_3O_4)

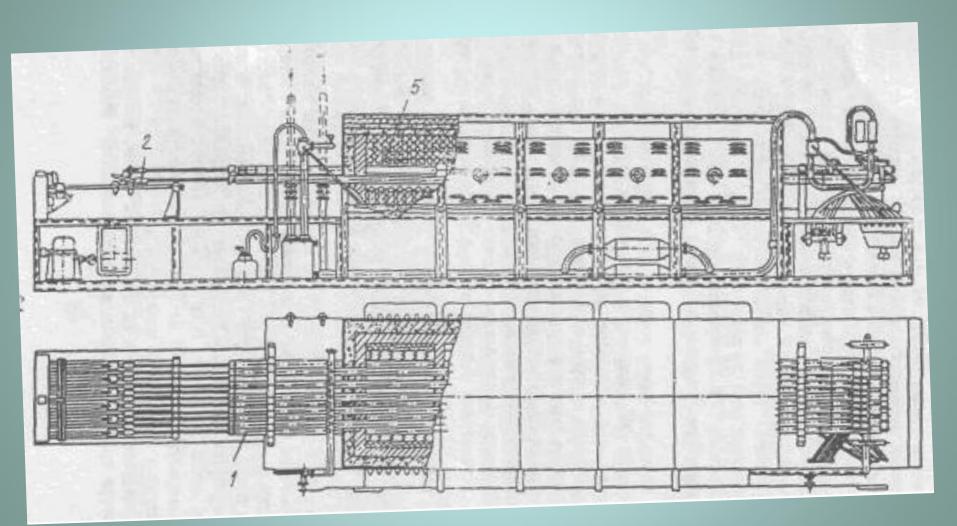
Процессы восстановления оксидов железа

•
$$3Fe_2O_3 + H_2 = 2 Fe_3O_4 + H_2O + 7,14 кДж$$

•
$$Fe_3O_4 + H_2 = 3FeO + H_2O - 53,00 кДж$$

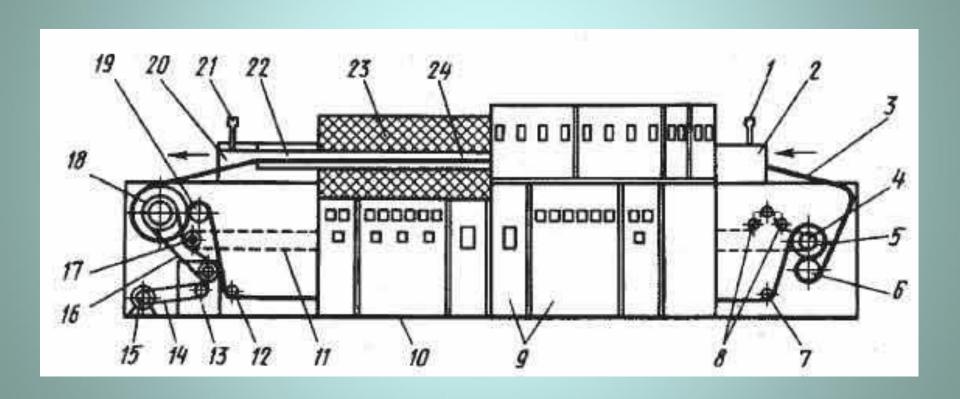

•
$$FeO + H_2 = Fe + H_2 0 - 30,24$$
 кДж

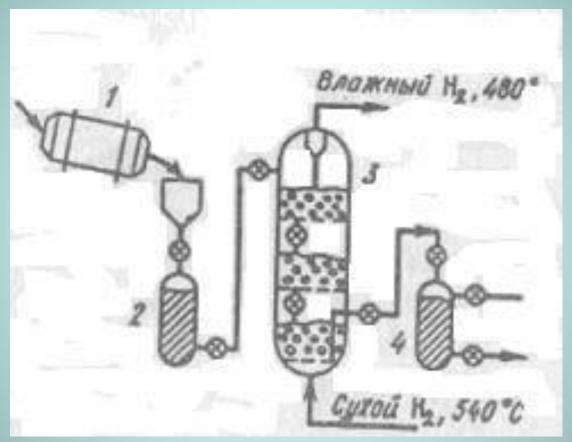
•
$$Fe_3O_4 + H_2 = 3Fe + 4H_2O - 224$$
, кДж.


механизм восстановления оксидов металлов газообразным восстановителем

- 1. Адсорбция газа-восстановителя (H₂, CO) на поверхности оксида.
- 2. Уход электронов от атомов адсорбированного восстановителя в решетку оксида, например *FeO*, с образованием положительных ионов восстановителя:
- H_2 -2ë = $2H^+$
- З. Взаимодействие катиона восстановителя с анионом кислорода на поверхности кристалла оксида в наиболее энергетически выгодных (дефектных) местах с образованием H₂O (или CO₂).
- 4. Десорбция образующихся молекул $H_2^{}$ О (или $C0_2^{}$).
- 5. Образование ионов металла при уходе кислорода с поверхности оксида.

Губчатый порошок железа, полученный восстановлением


Многотрубчатая толкательная печь


Проходная муфельная печь

Конвейерная печь

Схема получения порошка железа в установке кипящего слоя

 1 - вращающаяся печь для обжига концентрата; 2 бункер; 3 - реактор; 4 - приемный бункер

Варианты получения железного порошка восстановлением водородом

- I. В проходных муфельных или трубчатых печах; t₁= 650 ÷ 700 °C, t₂ = 700 ÷ 800 °C
- 2. В конвейерной проходной печи; t = 980 °C, т = 5 час.
- 3. В печи кипящего слоя. t = 540 °C + отжиг 800 °C.

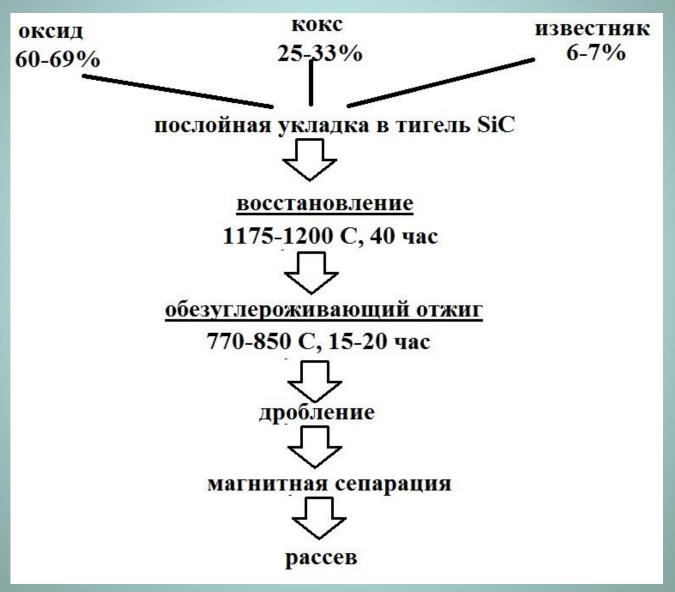
$$MeO + CO = Me + CO_2$$

 $C + CO_2 = 2 CO$

$$MeO + C = Me + CO$$

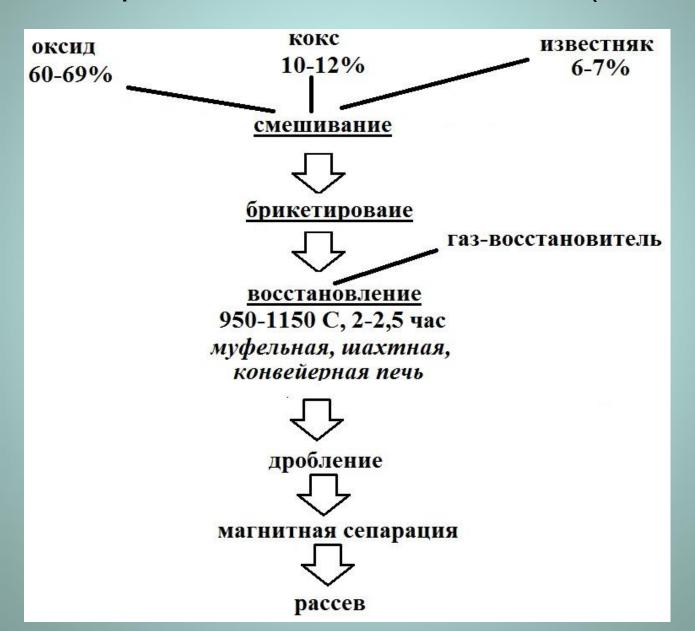
Процессы восстановления оксидов железа твердым углеродом

•
$$3 Fe_2O_3 + C = 2 Fe_3O_4 + CO$$

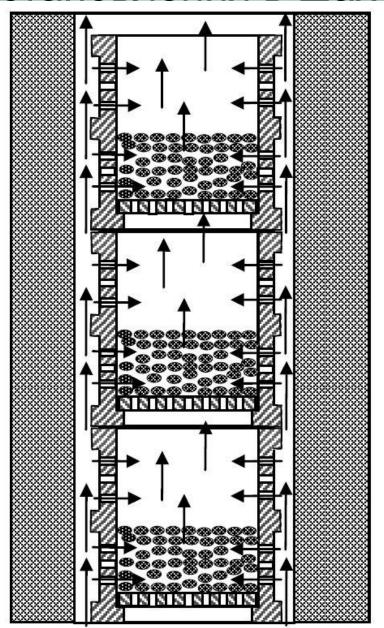

•
$$Fe_3O_4 + C = 3FeO + CO$$

•
$$Fe_3O_4 + C = 3FeO + CO$$

• $2Fe_3O_4 + C = 6FeO + CO_2$


•
$$FeO+C = Fe+CO$$

•
$$Fe_3O_4 + 4C = 3Fe + 4CO$$


Восстановление твердым углеродом

Комбинированное восстановление (С<0,1%)

Схема восстановления в шахтной печи

Классификация железных порошков ГОСТ 9849-86

- Порошок подразделяют:
- - по способу изготовления:
- восстановленный В;
- распыленный Р;
- по химическому составу на марки ПЖВ1, ПЖВ2, ПЖВ3, ПЖВ4, ПЖВ5, ПЖР2, ПЖР3 и ПЖР5;
- по гранулометрическому составу, по крупности зерна в мкм 450, 315, 200, 160, 71;
- по насыпной плотности на 22, 24, 26, 28, 30.
- 1.2. В <u>условном обозначении</u> порошка указывают:
- порошок П; металл, из которого изготовлен порошок (железо) Ж; способ изготовления - В, Р; марку по химическому составу; гранулометрический состав; насыпную плотность.
- Примеры условных обозначений
- ПЖВ1 .450.26 ГОСТ 9849-86
- Порошок железный, восстановленный, марки ПЖВ1, по гранулометрическому составу 450 мкм, с насыпной плотностью 2,6 г/см³:
- ПЖР2 .200.26 ГОСТ 9849-86
- Порошок железный, распыленный, марки ПЖР2, по гранулометрическому составу 200 мкм, с насыпной плотностью 2,6 г/см³:

Химический состав железного порошка

	углерода	кремния	марганца	
ПЖВ1	0,02	0,08	0,10	
ПЖВ2	0,02	0,10	0,35	
ПЖВ3	0,05	0,15	0,40	
ПЖВ4	0,12	0,15	0,45	
ПЖВ5	0,25	0,25	0,45	
ПЖР2	0,02	0,05	0,15	
ПЖР3	0,05	0,08	0,20	
ПЖР5	0,10	0,10	0,30	

[•] Регламентируется содержание элементов: C, Si, Mn, S, P, потери массы при прокаливании водороде (кислорода), остатка, нерастворимого в соляной кислоте

Гранулометрический состав порошка

Способ изготовл	Класс крупност и									
ения порошко в		от 0,630 до 0,450	от 0,450 до 0,315	от 0,315 до 0,250	от 0,250 до 0,200	от 0,200 до 0,160	от 0,160 до 0,100	от 0,100 до 0,071	от 0,071 до 0,045	менее 0,045
Восстано вленные	450	-	10 - 30 Остальное		10 - 25	0 - 20				
	160	-	-	-	0 -	10	10 - 30	20 - 40	20 - 40	10 - 30
	71	-	-	-	-	-	-	0 - 10	Остально е	50 - 80
Распылен ные	450	0 - 5	Остальное		10 - 30		0 - 10			
	315	-	0 - 10	5 - 20	Остал	тьное		30 - 55		0 - 15
	200	-	-	-	0 - 1,5	0 - 15	0	стальн	oe	10 - 25

• Знак «-» означает, что контроль данных фракций не проводится. Наличие следов данных фракций не является браковочным признаком .

Насыпная плотность

Обозначение насыпной плотности	Насыпная плотность, г/см ³				
22	Св. 2,10 до 2,30 включ.				
24	» 2,30 » 2,50 »				
26	» 2,50 » 2,70 »				
28	» 2,70 » 2,90 »				
30	» 2,90				

Основные производители железных порошков

- НПО «Тулачермет», АО «ПОЛЕМА»
- Броварский завод порошковой металлургии;