Федеральное агентство железнодорожного транспорта Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Сибирский государственный университет путей сообщения» в г.Новоалтайске

<u>Лабораторная работа №4.</u> Семисегментный индикатор.

Автор: преподаватель информатики и схемотехники Чебан Олег Олегович

Дата создания: 2015

Цель работы:

- 1. Исследовать работу семисегментного индикатора.
- 2. Научиться минимизировать логические функции методом карт Карно.

Оборудование: Программа моделирования цифровых логических схем

Logisim http://www.cburch.com/logisim/ru/

Постановка задачи.

Дано: Семисегментный индикатор в программе Logisim представлен на Рис.1. Рис. 1. Семисегментный индикатор в программе Logisim

1. Построим таблицу истинности для 3-х битового входа, т. е. 2^3 = 8 (цифры от 0 до 7), см. Табл. 1.

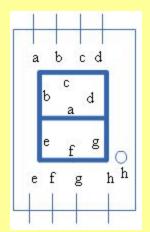
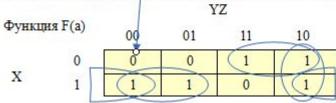



Таблица 1. Таблица истинности семисегментного индикатора от трех переменных.

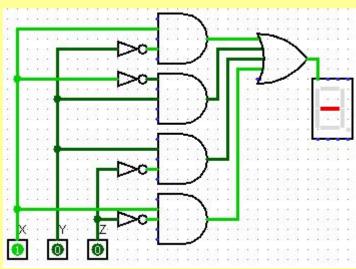
N	X	Y	Z	a	b	С	d	е	f	g	h	F(x, y, z)
O	0	0	0	0	1	1	1	1	1	1	1	F (0,0,0)
1	0	0	1	0	0	0	1	0	0	1	1	F (0,0,1)
2	0	1	0	1	0	1	1	1	1	0	1	F (0,1,0)
3	0	1	1	1	0	1	1	0	1	1	1	F (0,1,1)
4	1	0	0	1	1	0	1	0	0	1	1	F (1,0,0)
5	1	0	1	1	1	1	0	0	1	1	1	F (1,0,1)
6	1	1	0	1	1	1	0	1	1	1	1	F (1,1,0)
7	1	1	1	0	0	1	1	0	0	1	1	F (1,1,1)

2. Строим карту Карно для сегмента А (аналогично строятся карты для остальных сегментов В, С. Н)

3. Найдем сумму произведений термов

Правила Карно.

В произведении не участвует тот терм (переменная), который меняет свое значение с 0 на 1 или с 1 на 0. Например, в первом произведении X равен 1, Y — в первом столбце = 0, во втором = 0, поэтому терм Y участвует в произведении с отрицанием, т. к. равен 0. Терм Z в первом столбце равен 0, а во втором 1, значит он не входит в первое произведение термов.


Каждая единица должны быть объедена в группу с соседней единицей.

Итак, получилось 4 группы, запишем сумму произведений термов:

F(a)=X*HE Y+HE X*Y+Y*HE Z+X*HE Z

4. Строим логическую схему для сегмента А, Рис. 2

Рис. 2. Логическая схема для сегмента А

Дадим название схемы (в свойствах схемы) → Fa

Аналогично по логическим выражениям постройте логические схемы для сегментов: **Fb**, **Fc**, **Fd**, **Fe**, **Ff**, **Fg**

Fb = X*HE Y + HE Y * HE Z + X * HE Z (протестируйте результат!)

Fc = HE X*Y + Y *Z + Y * HE Z + X*Y + X * Z + HE X * HE Z

Fd = HE X*HE Y + HE X * Z + HE X * Y + HE Y * HE Z + Y* Z + HE X * HE Z

Fe = HE X * HE Z + Y * HE Z

Ff = HE X*Y + Y * HE Z + HE X * HE Z + X*HE Y*Z

Fg = X*HE Y + HE Y * HE Z + HE X * HE Z

Fh = 1 (константа) — десятичная точка, создавать схему не нужно.

6. Строим микросхему «Семисегментный индикатор», Рис. 3

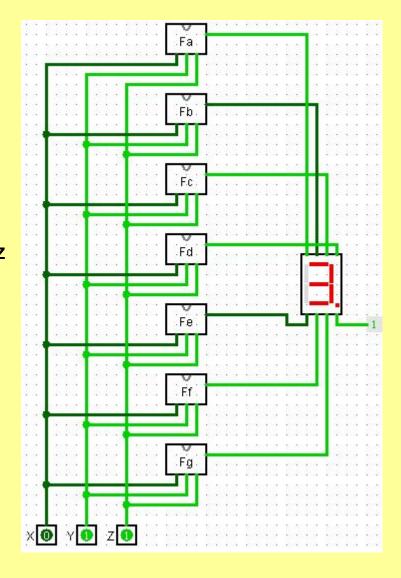
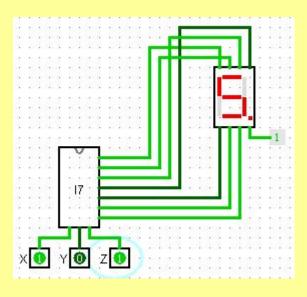



Рис. 3. Семисегментный индикатор

Самостоятельно.

1. Объединить подсхемы **Fn** в единую микросхему, см. Рис. 4

Рис. 4. Микросхема «Семисегментный индикатор».

