
Комплексная оценка уровня риска

Основные механизмы управления риском

Механизмы экономической ответственности:

- Механизм экспертизы;
- Механизм возмещения ущербов;
- Механизм платы за риск;
- Механизм аудита.

Механизмы стимулирования снижения уровня риска:

- Механизм финансирования снижения уровня риска;
- Механизм компенсации затрат;
- Механизм снижения ожидаемого ущерба.
- Механизм экономической мотивации;
- Механизм согласования интересов.

Механизмы перераспределения рисков:

- Механизм страхования;
- Механизм экономической мотивации;
- Механизм оптимизации программ снижения уровня риска.

Механизмы резервирования:

- механизм образования резервов трудовых ресурсов;
- Механизмы образования резервов материальных ресурсов;
- Механизм быстрой организации производства.
- Механизмы резервирования:

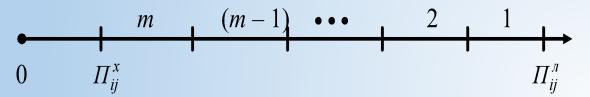
И другие механизмы...

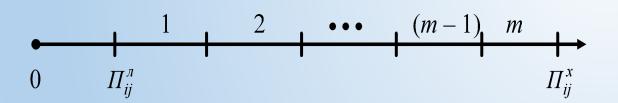
Примеры механизмов

- *Механизмы экономической ответственности* строятся на соблюдении стандартов и норм, отклонение от которых ведет к штрафам в плоть до прекращения производственного процесса.
- *Механизмы стимулирования снижения уровня риска* вместо штрафов используется мотивация в виде компенсаций и премий.
- *Механизм честной игры* стимулирует сообщение Агентом Центру достоверной информации.
- Механизм финансирования снижения уровня риска основа механизма заключается в распределении денежных средств между структурными подразделениями организации;
- Механизм согласования интересов назначение Центром плана (например, по снижению рисков), который Агентам выгоден, или который выгодно выполнять.
- *Механизмы перераспределения рисков* механизмы направленные на страхование, т.е. на передачу части рисков другому лицу: страховой компании, поставщику, контрагенту.

- *Механизмы резервирования* на случай чрезвычайных ситуаций для уменьшения потерь создаются резервы материальных, трудовых, финансовых и т.д. ресурсов.
- *Механизм встречных планов* подразделение само предлагает план. Путем настройки штрафов Центр может обеспечить необходимый уровень надежности плана.
- *Механизм опережающего самоконтроля* чем раньше Агент сообщает о корректировке плана, тем меньше его штраф за это.
- Механизм оптимизации программ снижения уровня риска.
- Механизм комплексного оценивания (КО).

Для применения механизма КО необходимо решить две задачи:


- 1. Построить дерево свертки отдельных показателей в КО.
- 2. Обеспечить сообщение достоверной информации, поскольку чаще всего задача решается Центром на основе информации, полученной от Агентов.


Этапы применения механизма комплексного оценивания

- 1. ОПРЕДЕЛЕНИЕ НАБОРА ЛОКАЛЬНЫХ РИСКОВ
- 2. РАЗБИТИЕ РИСКОВ НА ДВЕ ПОДГРУППЫ «ИЗМЕРИМЫЕ» И «НЕИЗМЕРИМЫЕ»
- 3. ФОРМИРОВАНИЕ БАЛЬНОЙ ШКАЛЫ ОЦЕНОК
- 4. ФОРМИРОВАНИЕ ПОКАЗАТЕЛЕЙ ДЛЯ РИСКОВ «ИЗМЕРИМОЙ» ПОДГРУПЫ
- 5. ФОРМИРОВАНИЕ ШКАЛЫ ПЕРЕСЧЕТА ДЛЯ РИСКОВ «ИЗМЕРИМОЙ» ПОДГРУППЫ
- 6. РАСЧЕТ ЗНАЧЕНИЯ ПОКАЗАТЕЛЕЙ РИСКА ИЗ «ИЗМЕРИМОЙ» ПОДГРУПЫ
- 7. ПЕРЕСЧЕТ ПОКАЗАТЕЛЕЙ В ПРОМЕЖУТОЧНЫЕ БАЛЛЬНЫЕ ОЦЕНКИ РИСКА
- 8. ОЦЕНКА ЛОКАЛЬНЫХ РИСКОВ «ИЗМЕРИМОЙ» ПОДГРУППЫ (например, среднее арифметическое)
- 9. ОПРЕДЕЛЕНИЕ ОЦЕНОК «НЕИЗМЕРИМОЙ» ПОДГРУППЫ РИСКОВ (ЭКСПЕРТНАЯ ОЦЕНКА)
- 10. СВЕРТКА ОЦЕНОК ПАРЫ ЛОКАЛЬНЫХ РИСКОВ, И ПОСТРОЕНИЕ БИНАРНОЙ СТРУКТУРЫ СВЕРТКИ
- 11. ФОРМИРОВАНИЕ МАТРИЦЫ ЛОГИЧЕСКОЙ СВЕРТКИ
- 12. ИНТЕГРАЛЬНАЯ ОЦЕНКА РИСКА

Определение оценки для измеряемых рисков

Шкалы для пересчета значения показателя в баллы

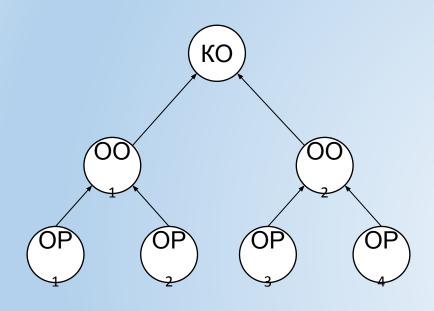
толичество баллов шкалы оценки
 токаваломудшее значение
 показателя

Пусть **b**_{ij} - данные, которые характеризуют локальные измеряемые риски. Риски пронумерованы от **1** до **i**, Показатели, характеризующие риски – от **1** до **j**.

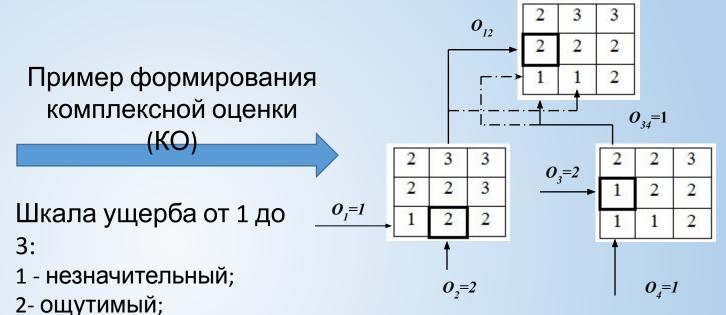
С помощью шкал пересчета переводим значения \boldsymbol{b}_{ij} в баллы.

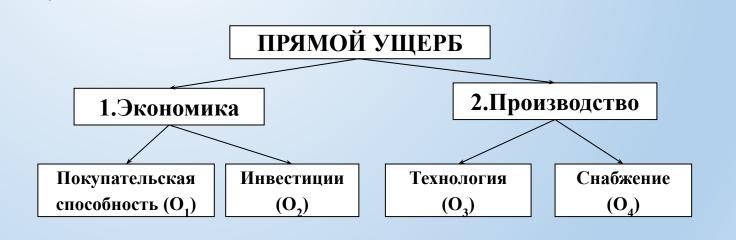
Балльная оценка риска рассчитывается как среднее арифметическое оценок $\boldsymbol{b}_{ij'}$ характеризующих этот риск.

Таким образом получаем балльные оценки для измеряемых рисков (очевидно, что они

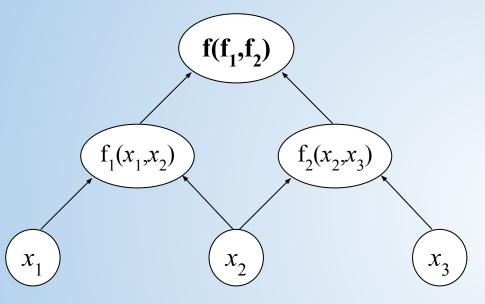

Этапы построения КО при экспертной

ULICHKE

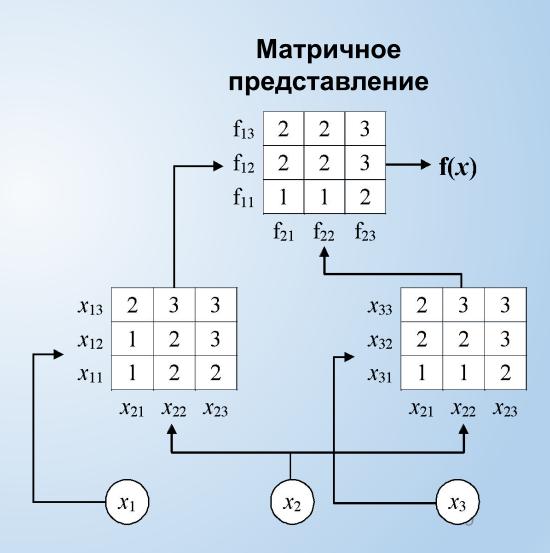

- 1. ОПРЕДЕЛЕНИЕ НАБОРА ЛОКАЛЬНЫХ РИСКОВ
- 2. РАЗБИТИЕ РИСКОВ НА ДВЕ ПОДГРУППЫ «ИЗМЕРИМЫЕ» И «НЕИЗМЕРИМЫЕ»
- 3. ФОРМИРОВАНИЕ БАЛЬНОЙ ШКАЛЫ ОЦЕНОК
- 4. ОПРЕДЕЛЕНИЕ ОЦЕНОК «НЕИЗМЕРИМОЙ» ПОДГРУППЫ РИСКОВ
- 5. ФОРМИРОВАНИЕ ПОКАЗАТЕЛЕЙ ДЛЯ РИСКОВ «ИЗМЕРИМОЙ» ПОДГРУПЫ
- 6. ФОРМИРОВАНИЕ ШКАЛЫ ПЕРЕСЧЕТА ДЛЯ РИСКОВ «ИЗМЕРИМОЙ» ПОДГРУППЫ
- 7. РАСЧЕТ ЗНАЧЕНИЯ ПОКАЗАТЕЛЕЙ РИСКА ИЗ «ИЗМЕРИМОЙ» ПОДГРУПЫ
- 8. ПЕРЕСЧЕТ ПОКАЗАТЕЛЕЙ В ПРОМЕЖУТОЧНЫЕ БАЛЛЬНЫЕ ОЦЕНКИ РИСКА
- 9. ОЦЕНКА ЛОКАЛЬНЫХ РИСКОВ «ИЗМЕРИМОЙ» ПОДГРУППЫ
- 10.СВЕРТКА ОЦЕНОК ПАРЫ ЛОКАЛЬНЫХ РИСКОВ, И ПОСТРОЕНИЕ БИНАРНОЙ СТРУКТУРЫ СВЕРТКИ
- 11.ФОРМИРОВАНИЕ МАТРИЦЫ ЛОГИЧЕСКОЙ СВЕРТКИ
- 12. ИНТЕГРАЛЬНАЯ ОЦЕНКА РИСКА


Формирование комплексной оценки

3- существенный.

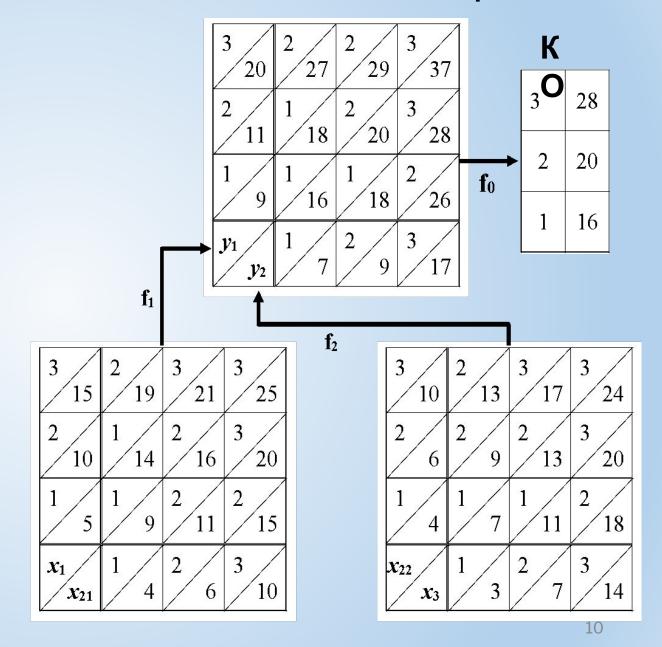


Параллельное и последовательное формирование комплексной ОР₁ ОР₂ ОР₂



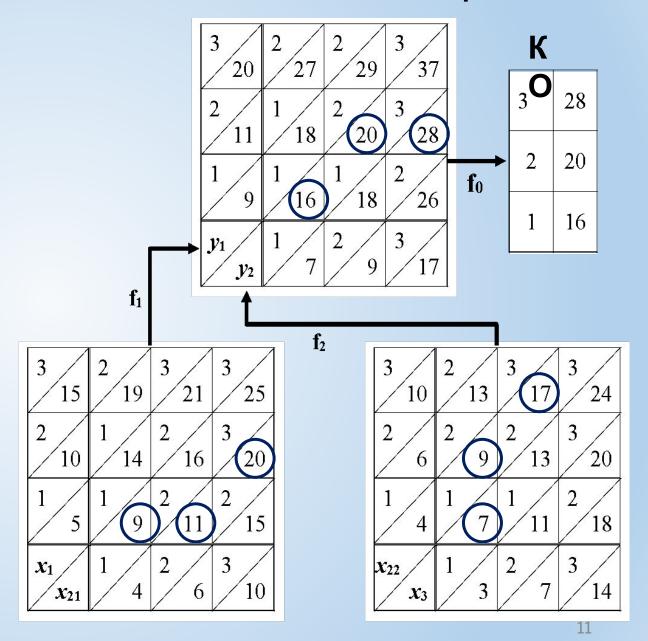
Пример формирования КО для программы снижения уровня риска

 ${f x_2}$ — мероприятия, снижающие риск сразу по двум направлениям — ${f f_1}$ и ${f f_2}$.


Программа снижения риска с минимальными затратами

Рассмотрим решение задачи для приведенной выше сети.

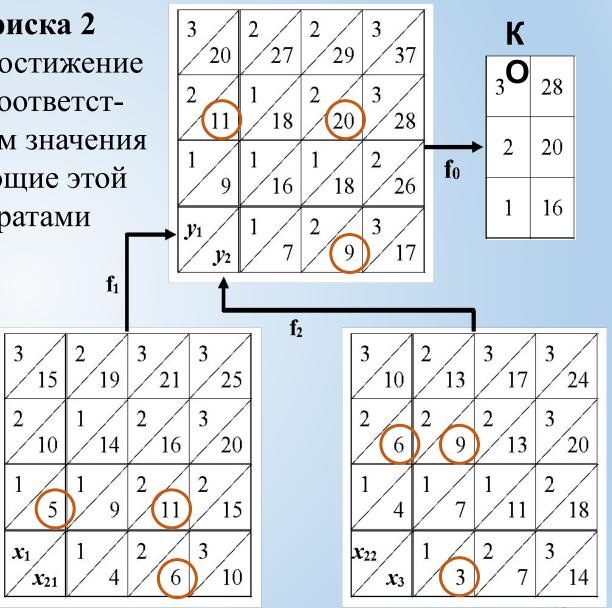
В верхних половинах клеток трех матриц содержатся оценки риска (по направлениям, объединённые и комплексная), в нижних половинах — затраты на достижение этих оценок или «удержание» соответствующего уровня.


Шкала:

- 1 высокий риск;
- 2 средний риск;
- 3 низкий риск.

Программа снижения риска с минимальными затратами

В каждой матрице выделены клетки, соответствующие минимальным затратам на получение того или иного уровня риска (по направлениям или объединённого). В таблице «КО» приведены минимальные значения затрат для достижения (или удержания) комплексной оценки риска на соответствующем уровне.

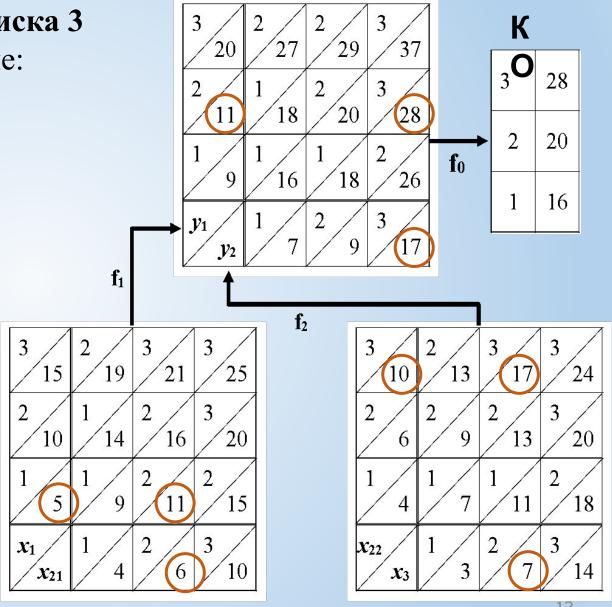


Поиск конкретного решения методом обратного хода

Пусть требуемая комплексная оценка риска 2 (средний). Минимальные затраты на ее достижение равны 20. Находим в матрице $\mathbf{f_0}$ клетку, соответствующую этим оценке и затратам. Смотрим значения объединенных показателей, соответствующие этой КО. Это $y_1 = 2$ с затратами 11 и $y_2 = 2$ с затратами **9**. Найдя эти значения в матрицах f_1 и f_2 , аналогичным образом находим оптимальное решение: $x_1 = 1, x_{21} = x_{22} = 2, x_3 = 1.$

 $\mathbf{x}_1 = \mathbf{1}, \, \mathbf{x}_{21} = \mathbf{x}_{22} = \mathbf{2}, \, \mathbf{x}_3 = \mathbf{1}.$ Поскольку $\mathbf{x}_{21} = \mathbf{x}_{22}$, решение является допустимым.

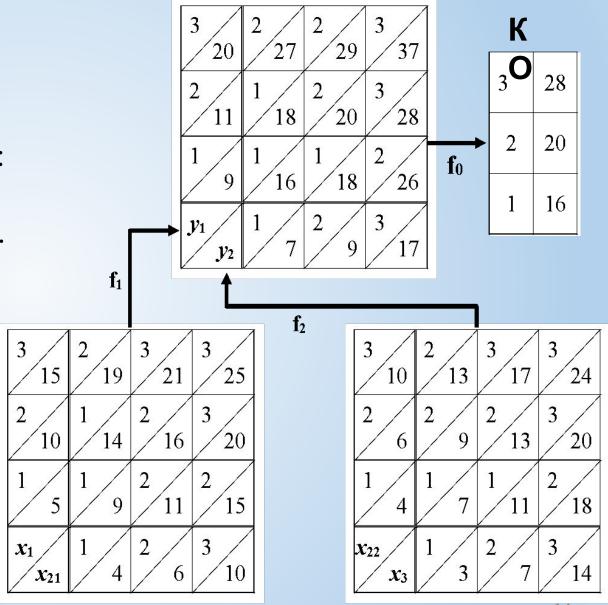
(x₂ (затраты на соответствующие мероприятия) делится на 2 части, если соответствующие меры снижают риск сразу по нескольким направлениям)


Случай недопустимого решения

Пусть требуемая комплексная оценка риска 3 (низкий). В этом случае получаем решение: $\mathbf{x}_1 = \mathbf{1}, \, \mathbf{x}_{21} = \mathbf{2}, \, \mathbf{x}_{22} = \mathbf{3}, \, \mathbf{x}_3 = \mathbf{2}.$ Затраты — 28.

HO! $x_{21} \neq x_{22}$, т.е. решение не допустимое.

Мы можем только утверждать, что меньше на снижение риска до низкого уровня мы потратить не сможем, т.е. затраты равные 28 — это нижняя оценка решения поставленной задачи.


Для поиска допустимого решения в этом случае существует несколько способов.

Программа снижения риска с минимальными затратами

1. Можно улучшить нижнюю оценку, изменяя разбиение затрат для \mathbf{x}_2 (например, для $\mathbf{x}_{21} - \mathbf{10}$, а для $\mathbf{x}_{22} - \mathbf{2}$). Тогда мы получим оптимальное решение: $\mathbf{x}_1 = \mathbf{1}, \, \mathbf{x}_{21} = \mathbf{x}_{22} = \mathbf{2}, \, \mathbf{x}_3 = \mathbf{3}, \, \text{затраты} - \mathbf{31}.$ Оно допустимое, а значит – оптимальное. (Проверьте это самостоятельно.)

2. Можно использовать полученную оценку в методе ветвей и границ, после применения которого получим такое же решение.

ПРИМЕР

граничные величины вероятности $B_1^B = 0.2$; $B_2^B = 0.6$ граничные величины ущерба $B_1^y = 20$; $B_2^y = 50$

РИСКИ (количественные

i	1	2	3	4	5	6
	0,9	0,8	0,7	0,6	0,65	0,5
	100	80	75	45	60	90

РИСКИ (качественная

i	1	2	3	4	5	6
	3	3	3	2	3	2
	3	3	3	2	3	3

Пример расчета
$$A_{i1}^{\mathrm{B}}=B_{i}^{\mathrm{B}}-B_{i1}^{\mathrm{B}}=0.9-0.2=0.7$$
 значений таблицы $A_{i1}^{\mathcal{Y}}=B_{i}^{\mathcal{Y}}-B_{i1}^{\mathcal{Y}}=100-20=80$

МАТРИЦА РАСПРЕДЕЛЕНИЯ РИСКОВ ПО СТЕПЕНИ

3	δυνο	3(1,2,3,5)	
2	1	2(4)	3
1	1	1	2
S	1	2	3
Р			

МИНИМАЛЬНЫЕ УМЕНЬШЕНИЯ ВЕРОЯТНОСТЕЙ И УЩЕРБОВ, необходимые для перевода критериев в категории

со сред	іней или	МИНИМ	альной	степень	ю опас	ности
	0,7	0,6	0,5	0,4	0,45	0,3
	0,3	0,2	0,1	0	0,05	0
	80	60	55	25	40	70
	50	30	25	0	10	40

ВЫБОР МЕРОПРИЯТИЙ ДЛЯ ПЕРВОГО РИСКА

i	1	2	3	4	5	6
	10	15	5	20	30	10
	25	43	18	80	150	60
	20	35	15	10	40	25
	50	100	50	40	200	150

– номер мероприятия;

 $a_i^{\rm B}$ – снижение вероятности риска для мероприятия i;

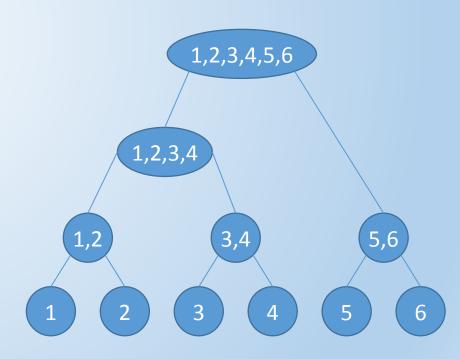
 $\mathbf{B}_{i}^{\mathrm{B}}$ — затраты на снижение вероятности;

 a_i^y – снижение уровня риска для мероприятия i;

 $\mathbf{B}_{i}^{\mathbf{y}}$ – затраты на снижение уровня риска;

 x_i — бинарная переменная. x_i = 1, если мероприятие iвыполняется и x_i = 0, если не выполняется.

ВЫБОР МЕРОПРИЯТИЙ ДЛЯ


снижения вероятности: $25x_1+43x_2+18x_3+80x_4+150x_5+60x_6 \rightarrow \min$, целевая функция:

функция ограничения: $10x_1 + 15x_2 + 5x_3 + 20x_4 + 30x_5 + 10x_6 \ge 70$

снижения уровня риска:

целевая функция: $50x_1 + 100x_2 + 50x_3 + 40x_4 + 200x_5 + 150x_6 \rightarrow \min$

функция ограничения: $20x_1 + 35x_2 + 15x_3 + 10x_4 + 40x_5 + 25x_6 \ge 80$

Выбор мероприятий для снижения вероятности

i	1	2	3	4	5	6
	10	15	5	20	30	10
	25	43	18	80	150	60

$$25x_1 + 43x_2 + 18x_3 + 80x_4 + 150x_5 + 60x_6 \rightarrow \min,$$

$$10x_1 + 15x_2 + 5x_3 + 20x_4 + 30x_5 + 10x_6 \ge 70,$$

0 (3,4)	5;18 0;0	15;43	15;43	30;86 25;68
1	20;80 5;18	30;105 15;43	35;123 20;61	45;148 30;86
3	25;98	35;123	40;141	50;166

1	15;43	25;68
0	0;0	10;25
2 1	0	1

1	20;80	25;98
0	0;0	5;18
4 3	0	1

1	10;60	40;210
0	0;0	30;150
6 5	0	1

	Вариан	0	1	2	3
>	T		4.0	4.5	25
	Эффек т	0	10	15	25
	Затрат	0	25	43	68
>	Вариан т	0	1	2	3
	Эффек т	0	5	20	25
	Затрат ы	0	18	80	98
>	Т				
	Эффек т	0	10	30	40
	Затрат ы	0	6	50	210

Вариант	0	1	2	3	4	5	6	7	8	9	10
Эффект	0	5	10	15	20	25	30	35	40	45	50
Затраты	0	18	25	43	61	68	86	123	141	148	166

Выбор мероприятий для снижения

Вариант	0	1	2	3	4	5	6	7	8	9	10
Эффект	0	5	10	15	20	25	30	35	40	45	50
Затраты	0	18	25	43	61	68	86	123	141	148	166

Вариан	0	1	2	3
т Эффек	0	10	30	40
т Затрат ы	0	60	L50	210

10	50;166	60;226	-	-
9	45;148	55;208	-	-
8	40;141	50;201	70;291	-
7	35;123	45;183	65;273	-
6	30;86	40;146	60;236	70;296
5	25;68	35;128	55;218	65;278
4	20;61	30;121	50;211	60;271
3	15;43	25;103	45;193	55;253
2	10;25	20;85	40;175	50;235
1	5;18	15;78	35;168	45;28
0	0;0	10;60	30;150	40;210
(1,2,3,4) (5,6)	0	1	2	3

Снижен	Снижен
ие	ие
риска	риска
до	до
минима	среднег
льного	о
уровня	уровня

Выбор мероприятий для снижения

вероятности

Bap	риант	0	1	2	3	4	5	6	7	8	9	10
Эф	фект	0	5	10	15	20	25	30	35	40	45	50
Зат	раты	0	18	25	43	61	68	86	123	141	148	166

	Вариан т		0		1		2	3
	Эффек т		0		10	30		40
	Затрат ы		0		6	1	.50	210
Т	ий		Т		10;60)	40	;210
•			0		0;0		30;150	
		E	5		0			1

3	25;98	35;123	40;141	50;166
2	20;80	30;105	35;123	45;148
1	5;18	15;43	20;61	30;86
0	0;0	10;25	15;43	25;68
(3,4) (1,2)	0	1	2	3

Окончательно получаем оптимальный набор мероприятий для риска 1 по уменьшению вероятности

до минимального уровня: 2, 3, 4, 5

до среднего уровня: 1, 2, 3

	Вариан	0	1	2	3	1	15;43	25;68	
_	т					0	0;0	10;25	
	Эффек	0	10	15	25	2 1	0	1	
	T								
	Вариан	0	1	2	3	1	20;80	25;98	
	T					0	0;0	5;18	
>	Эффек	0	5	20	25	4 3	0	1	

Пусть затраты на сохранение **max** уровня вероятности равны 40 (даже в максимально рисковой ситуации необходимо прилагать усилия, чтобы она не стала катастрофической).

Получаем S_{11}^{B} =291, S_{12}^{B} =86, S_{13}^{B} =40

Выбор мероприятий для снижения уровня

Применив аналогичный алгоритм получаем следующие наборы мероприятий:

Для снижения риска до минимального уровня: 1, 2, 3, 4, затраты – 240

<u>Для снижения риска до среднего уровня</u>: **1, 2**, затраты – **150**

Пусть затраты на сохранение максимального уровня ущерба равны 60. Тогда получаем:

$$S_{11}^{y}$$
=**240,** S_{12}^{y} =**150,** S_{13}^{y} =**60**

Для определения оптимального снижения вероятности и ущерба по риску 1 подставляем величины S_{1j}^{B} и $S_{1j}^{\mathcal{Y}}$, j =1,2,3 в матрицу степени опасности

P S	1;240	2;150	3;60
1;291	1;531	1;441	2;351
2;86	1;326	2;236	3;146
3;40	2;280	2;190	3;100

Для каждой оценки (первое число в ячейке) выбираем минимальные значения затрат (второе число в ячейке). Получаем

(1-й индекс обозначает номер риска, 2-й – оценку).

Рассмотренная методика определения минимальных затрат на снижение степени опасности с максимального уровня до среднего и минимального или возможности «удержаться» на высоком уровне, применяется к каждому риску.

Стабжица Мероприятий для снижения

ориска 2	1	2	3	4	5	6
	5	20	10	15	25	30
	10	45	50	20	30	40
	10	5	35	20	15	30
	35	40	70	50	30	90

Снижение уровня ущерба:

$$A_{21}^{\text{B}}$$
=60, A_{22}^{B} =30
35 x_1 +40 x_2 +70 x_3 +50 x_4 +30 x_5 +90 x_6 \rightarrow min
10 x_1 +5 x_2 +35 x_3 +20 x_4 +15 x_5 +30 x_6 \geq 60

Решение:

$$x_1 = x_3 = x_5 = 1$$
, $x_2 = x_4 = x_6 = 0$, затраты $S_{21}^y = 135$. $x_1 = x_2 = x_3 = x_6 = 0$, $x_4 = x_5 = 1$, затраты $S_{22}^y = 80$. Сохранение **тах** уровня ущерба $S_{23}^y = 40$.

Снижение уровня вероятности:

$$A_{21}^{B} = 0,6$$
 и $A_{22}^{B} = 0,2$
 $10x_1 + 45x_2 + 50x_3 + 20x_4 + 30x_5 + 40x_6 \rightarrow \min$,
 $5x_1 + 20x_2 + 10x_3 + 15x_4 + 25x_5 + 30x_6 \ge 60$.

Решение:

$$x_1 = x_2 = x_3 = x_4 = 0$$
, $x_5 = x_6 = 1$, затраты $S_{21}^y = 80$. $x_1 = x_4 = 1$, $x_2 = x_3 = x_5 = x_6 = 0$, затраты $S_{22}^y = 30$. Сохранение **max** уровня вероятности $S_{23}^y = 15$.

Матрица степени опасности с оптимальными

вариант	гами для 2;150	я каждоі 2;95	й оценки 3;55
2;30	1;165	2;110	3;70
1;80	1;220	1;165	2;125
P S	1;135	2;80	3;40

$$S_{21} = 165, S_{22} = 95, S_{23} = 55$$

Оценки 1 (низкая степень риска) можно достичь двумя путями.

Стабжица Мероприятий для снижения

риска 3	1	2	3	4	5	6
	12	18	10	15	20	25
	36	40	30	50	60	80
	10	15	20	5	30	18
	20	40	60	5	80	64

Снижение уровня ущерба:

$$A_{31}^{y}$$
 = 55 и A_{32}^{y} = 25
 $20x_1 + 40x_2 + 60x_3 + 5x_4 + 80x_5 + 64x_6 \rightarrow \min$
 $10x_1 + 15x_2 + 20x_3 + 5x_4 + 30x_5 + 18x_6 \ge 55$

Решение:

$$x_1 = x_2 = x_5 = 1$$
, $x_3 = x_4 = x_6 = 0$, затраты $S_{31}^y = 140$. $x_1 = x_2 = 1$, $x_3 = x_4 = x_5 = x_6 = 0$, затраты $S_{32}^y = 60$. Сохранение **тах** уровня ущерба $S_{33}^y = 45$.

Снижение уровня вероятности:

$$A_{31}^{\text{B}}$$
 = 0,5 и A_{32}^{B} = 0,1
 $36x_1 + 40x_2 + 30x_3 + 50x_4 + 60x_5 + 80x_6 \rightarrow \min$
 $12x_1 + 18x_2 + 10x_3 + 15x_4 + 20x_5 + 25x_6 \ge 50$

Решение:

$$x_1 = x_2 = x_5 = 1$$
, $x_3 = x_4 = x_6 = 0$, затраты $S_{31}^y = 136$. $x_3 = 1$, $x_1 = x_2 = x_4 = x_5 = x_6 = 0$, затраты $S_{32}^y = 30$. Сохранение **max** уровня вероятности $S_{33}^y = 10$.

Матрица степени опасности с оптимальными

вариан ⁻ 3;10	гами для 2;150	я каждоі 2;70	й оценки 3;55
2;30	1;170	2;90	3;75
1;136	1;276	1;196	2;181
PS	1;140	2;60	3;45

$$S_{31}$$
=170, S_{32} =70, S_{33} =55

Стабжица мероприятий для снижения

ориска 4	1	2	3	4	5	6
	4	18	9	15	20	25
	2	6	10	20	30	40
	10	5	15	8	12	17
	30	10	25	16	20	40

Снижение уровня ущерба:

$$A_{41}^{y} = 25$$
; $A_{42}^{y} = 0$
 $30x_1 + 10x_2 + 25x_3 + 16x_4 + 20x_5 + 40x_6 \rightarrow \min$
 $10x_1 + 5x_2 + 15x_3 + 8x_4 + 12x_5 + 17x_6 \ge 25$

Решение:

$$x_2 = x_4 = x_5 = 1$$
, $x_1 = x_3 = x_6 = 0$, затраты $S_{41}^{\mathrm{B}} = 46$ Сохранение **средн.** уровня ущерба $S_{42}^{\mathrm{B}} = 20$

Снижение уровня вероятности:

$$A_{41}^{B} = 0,4$$
; $A_{42}^{B} = 0$
 $2x_1 + 6x_2 + 10x_3 + 20x_4 + 30x_5 + 40x_6 \rightarrow \min$,
 $4x_1 + 18x_2 + 9x_3 + 15x_4 + 20x_5 + 25x_6 \ge 40$

Решение:

$$x_1 = x_5 = x_6 = 0$$
, $x_2 = x_3 = x_4 = 1$, затраты $S_{41}^{\mathrm{B}} = 36$ Сохранение **средн.** уровня вероятности $S_{33}^{y} = 10$

Матрица степени опасности с оптимальными

вариант	гами для	я каждоі	й оценки
2;10	1;56	2;30	
1;36	1;82	1;56	
P S	1;46	2;20	

$$S_{41} = 56, S_{42} = 30$$

Оценки 1 (низкая степень риска) можно достичь двумя путями.

Стабжица мероприятий для снижения

ориска 5	1	2	3	4	5	6
	30	14	16	20	10	5
	40	7	10	30	8	2
	15	12	18	13	20	25
	20	28	40	30	45	50

Снижение уровня ущерба:

$$A_{51}^{y} = 40, A_{52}^{y} = 10$$

 $20x_{1} + 28x_{2} + 40x_{3} + 30x_{4} + 45x_{5} + 50x_{6} \rightarrow \min$
 $15x_{1} + 12x_{2} + 18x_{3} + 13x_{4} + 20x_{5} + 25x_{6} \ge 40$

Решение:

$$x_1 = x_2 = x_4 = 1, x_3 = x_5 = x_6 = 0$$
, затраты $S_{51}^y = 78$
 $x_1 = 1, x_2 = x_3 = x_4 = x_5 = x_6 = 0$, затраты $S_{52}^y = 20$
Сохранение **max** уровня ущерба $S_{53}^y = 7$

Снижение уровня вероятности:

$$A_{51}^{B}$$
 = 45, A_{52}^{B} = 5
 $40x_{1}+7x_{2}+10x_{3}+30x_{4}+8x_{5}+2x_{6} \rightarrow \min$
 $30x_{1}+14x_{2}+16x_{3}+21x_{4}+10x_{5}+5x_{6} \ge 45$

Решение:

$$x_1 = x_4 = 0$$
, $x_2 = x_3 = x_5 = x_6 = 1$, затраты $S_{51}^{\mathrm{B}} = 27$ $x_1 = x_2 = x_3 = x_4 = x_5 = 0$, $x_6 = 1$, затраты $S_{52}^{\mathrm{B}} = 2$ Сохранение **max** уровня вероятности $S_{53}^{\mathrm{B}} = 1$

Матрица степени опасности с оптимальными

вариан	гамидля	я каждоі 2;2Т	й оценки <i>3</i> ;8
2;2	1;80	2;22	3;9
1;27	1;105	1;47	2;34
P S	1;78	2;20	3;7

$$S_{51} = 47, S_{52} = 21, S_{53} = 8$$

Стабжица мероприятий для снижения

риска 6	1	2	3	4	5	6
	12	8	17	13	20	10
	20	15	30	25	35	18
	25	20	35	10	15	15
	30	25	40	10	20	15

Снижение уровня ущерба:

$$A_{61}^{y} = 70, A_{62}^{y} = 40$$

 $30x_{1} + 25x_{2} + 40x_{3} + 10x_{4} + 20x_{5} + 15x_{6} \Rightarrow \min$
 $25x_{1} + 20x_{2} + 35x_{3} + 10x_{4} + 15x_{5} + 15x_{6} \ge 70$

Решение:

$$x_1 = x_3 = x_4 = 1$$
, $x_2 = 0$, $x_5 = 0$, $x_6 = 0$, затраты $S_{61}^y = 80$ $x_1 = x_2 = x_3 = 0$, $x_4 = x_5 = x_6 = 1$, затраты $S_{62}^y = 45$ Сохранение **max** уровня ущерба $S_{63}^y = 25$

Снижение уровня вероятности:

$$A_{61}^{B} = 0,3, A_{62}^{B} = 0$$

 $20x_{1} + 15x_{2} + 30x_{3} + 25x_{4} + 35x_{5} + 18x_{6} \rightarrow \min$
 $12x_{1} + 8x_{2} + 18x_{3} + 13x_{4} + 20x_{5} + 10x_{6} \ge 30$

Решение:

$$x_1 = x_3 = 1, x_2 = x_4 = x_5 = x_6 = 0,$$
 затраты $S_{61}^B = 50$ Сохранение **средн.** уровня вероятности $S_{62}^y = 15$

Матрица степени опасности с оптимальными

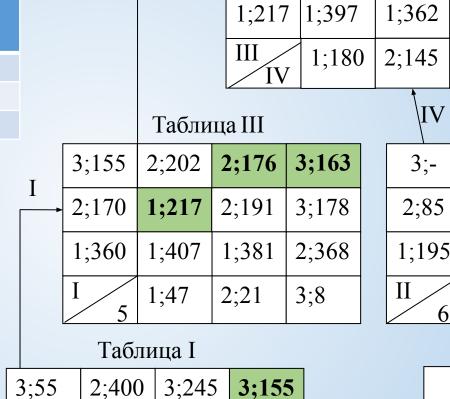
вариант	гами для	я каждоі	й оценки
2;15	1;95	2;60	3;40
1;50	1;130	1;95	2;75
P S	1;80	2;45	3;25

Оценки 1 (низкая степень риска) можно достичь двумя путями. Определения оптимальной стратегии снижения риска Таблица V

Затраты S_{ii} для достижения любой из оценок (баллы $j = \overline{1,3}$) по всем шести рискам ($i = \overline{1,6}$)

Риск Балл	1	2	3	4	5	6
1	345	165	170	56	47	95
2	190	95	70	30	21	60
3	100	55	55	-	8	40

ПОЛУЧЕННАЯ СТРАТЕГИЯ УМЕНЬШЕНИЯ СТЕПЕНИ ОПАСНОСТИ ДО МІМ УРОВНЯ:


Риски 1, 2, 3: и **Р**, и **S** остаются на уровне 3. **KO 3.**

Риск 4: и **Р** и **S** остаются на уровне 2. **КО 2.**

Риск 5: P остается на уровне 3, Sуменьшается до уровня 2 – мероприятие 1. КО 2.

Риск 6: возможны два варианта действий. KO 1.

1. P останется на уровне 2, S снижается до **УРОВНЯ 1 – МЕРОПРИЯТИЯ 1. 3 И 4.**

2;260

1;360

2;190

2;415

1;515

1;345

2;70

1;170

2;170

2;270

3;100

III

3;163

2;176

2;343

1;356

2;308

2;321

V

3;-

2;85

1;195

3;288

2;331

2;342

3;125

Таблица IV

1;180

1;290

/	6	1;95		2;60		3;40			
	3;-		-		-		-		
	2;30		1;195		2;125		2;85		
	1;:	56	1;2	21	2;1	51	2;1	111	

2;95

3;55

1;165

2;145

2;255

3;125

2;235

Учет многоцелевых мероприятий

Пусть имеются мероприятия, влияющие на снижение степени влияния сразу по нескольким рискам либо влияющие на снижение и вероятности, и ущерба по одному риску. Например – мероприятия по обучению персонала мерам обеспечения производственной безопасности. Как правило, число таких многоцелевых мероприятий не велико. Поэтому алгоритм заключается в переборе всех вариантов вхождения многоцелевых мероприятий в программу. Если число многоцелевых мероприятий равно q, то число вариантов их вхождения в программу равно 2^q .

Пусть для риска 1 мероприятия 5 и 6 являются многоцелевыми. Поскольку мероприятий 2, число их

i	1	2	3	4		5	6	17
	10	15	5	20		30	10	
	25	43	18	80		40	25	
	20	35	15	10	_	250	210	
	50	100	50	40	B _i	350	210	

Для всех оценок оптимальным является вариант 1 с затратами $S_{11} = 326$; $S_{12} = 190$; $S_{13} = 100$.

Случаи, когда имеются мероприятия, дающие вклад либо в уменьшение Р, либо в уменьшение S сразу по нескольким рискам, рассматриваются аналогично.

та**ім но программу.**

Решаем задачу для мероприятий 1, 2, 3, 4.

Получаем **min** затраты - $S_{11} = 326$; $S_{12} = 190$; $S_{13} = 100$.

2. Мероприятие 5 входит в программу, а 6 - нет.

Решаем задачу для мероприятий 1, 2, 3, 4, 5.

Получаем **min** затраты - $S_{11} = 140 + 350 = 490$; $S_{12} = 40 + 350 = 390$; $S_{13} = 0 + 350 = 350$.

3. Мероприятие 6 входит в программу, а 5 - нет.

Решаем задачу для мероприятий 1, 2, 3, 4, 6.

Получаем **min** затраты - $S_{11} = 210 + 210 = 420$; $S_{12} = 90 + 210 = 300$; $S_{13} = 0 + 210 = 210$.

4. Оба мероприятия входят в программу.

Решаем задачу для мероприятий 1, 2, 3, 4, **5, 6**.