ПЛОТНОСТЬ МАГМАТИЧЕСКИХ РАСПЛАВОВ

Не меньшую важность в динамике магматических расплавов имеет такое физическое свойство как плотность.

От плотности магмы зависит ее подвижность и способность к прорыву в верхние горизонты (всплывание), скорость перемещения и способность к вулканическим извержениям. Если взять магматический очаг, в условиях пластического состояния породы, то **л**итостатическое давление в апикальной части камеры *Р*_{1///} на глубине *Н*₁ составляет

$$P_{1lit} = \int_{-\pi_1}^{\pi_1} g(h_1) \rho_r(h_1) dh,$$

где ρ_r – плотность пород, H₁ – глубина от поверхности Земли до вершины камеры, g – ускорение силы тяжести.

Литостатическое давление в основании (нижней части) очага *P*_{2/it} вычисляется таким же образом по этой же формуле, но только для глубины *H*₂.

Собственное давление магмы в основании камеры с допущением того, что плотность магмы одинакова по всей высоте полости, составляет $p = 2 - \alpha l$

Составляет $P_{fl} = \rho_{fl}gl$, Здесь ρ_{fl} – плотность магмы, / – высота магматической камеры. Давление магмы P_{2fl} в основании магматического резервуара (на глубине H_2) равно литостатическому давлению P_{2lit} , а давление магмы вверху магматической камеры (на глубине H_1) составляет

$$P_{1fl}=P_{2fl}-P_{fl}.$$

Тогда избыточное давление магмы вверху очага равно

$$\Delta P_{fl} = P_{2fl} - P_{1lit}.$$

Давление Р

давлениях и T = 1600оС (Sakamaki et al., 2006; Suzuki et al., 1995) в сравнении с плотностным профилем модели стандартной мантии АК-135 (Kennet et al., 1995).

Физические свойства вмещающих пород и их влияние на динамику магмы

Физические свойства вмещающих пород и их влияние на динамику магмы

ГИДРОТЕРМАЛЬНЫЕ И МАГМАТИЧЕСКИЕ ФЛЮИДЫ

Основным компонентом эндогенных флюидов является вода, главное свойство которой высокая растворяющая способность, обусловленная во многом водородной связью. Считается, что жидкая вода состоит из группировок (кластеров) с льдоподобной структурой.

Р-Т диаграмма гидротермальных систем с изолиниями плотности воды в

Поверхностные проявления гидротермальной деятельности (фумаролы, гейзеры, котлы и горячие источники)

 Область
 https://www.researchgate.net/publication/28

 конволого 3326553_Seismic_and_Aseismic_Deformations

 _______and_Impact_on_Beservoir_Permeability_The

 _______Case_of_EGS_Stimulation_at_The_Geysers_C

 _______alifornia_USA

a

Магматический очаг с вулканическим каналом

Схематическая динамика гидротермальной системы над неглубоким вулканическим (магматическим) очагом

Кривая кипения и изолинии плотности воды (г/см3) К – критическая точка воды 21,982 МПа 374 ,15 С

Кривые плотности H2O - синие линии CO2 - красные линии (г/см3)

Схематическая диа	грамма ₍	200	400	600	8000
состояния систе	емы 0-	200			000
«вода+соль+га	13»				
Основой гидротермальных		Кривая кипения	Пар	+	- /í
флюидов обычно является Есди в воде растворяется вода	200 -		крис	таллы	/
СО ₂ , то смещается					/!
положение линии		2 - 2			
равновесия и положение			5% NaCIO		
критических точек в	системы водангаз				ы Б
область более низких (Присутствие в-системе NaCl ит	CO ₂ +H ₂ O)	>		(de	ИТН
температур и более некоторых других солей высоких давлений.				Ű,	ран
«удлиняет» кривую кипения в	600 -		10% 0	m	VC I Ba
область более высоких	Кривые критических точек	системы			цди
температур и давлений.	вода+соль+газ (H ₂ O+NaCl +	CO ₂)			одасг
Соответственно с этим			15%	0	υä
трансформируется кривая		жилко			
критических точек тройной		мидко			
системы H,O+NaCl+CO, . На					
диаграмме появляется поле				20% 🔾	
равновесия пар+кристаллы	1000 -				
(NaCl), с границы которой					
начинаются кривые кипения е Область надкритического флюида Смаановой систом в Волдкоссия в	3			25%	
газу также смещается вместе с	Р <i>,</i> бар -				
положением критических точек					

ПАРОВЫЕ ЗОНЫ В ГИДРОТЕРМАЛЬНЫХ СИСТЕМАХ

Перепад плотности флюида на на фазовой границе жидкость-пар на изотермических сечениях

ſ

Модель формирования паровой зоны при снижении пъезометрического уровня гидротерм

Р, бар

t

Модель формирования паровой зоны при увеличении температуры в нижней части разреза

Р, бар

Геохимический барьер на границе паровой зоны (отложение кремнезема и адуляризация исходных туфов)

К-13 Верхнего термального поля Паужетского месторождения парогидротерм

Граница паровой зоны, являющаяся геохимическим барьером, перемещается от поверхности на глубину, что связано с понижением пьезометрического уровня термальных вод (гидротерм). На этом геохимическом барьере происходит отложение растворенных в гидротермах компонентов, с чем и связаны очень большие колебания их содержаний в породе.

Модель пародоминирующего геотермального резервуара, окруженного водонасыщенными породами по Д.Е.Уайту (White et al., 1971)

Схема паровой зоны вулкана Лассен Пик (по Ingebritsen, Sorey, 1985)

Схематический разрез через пародоминирующую зону Нижне-Кошелевского геотермального месторождения (по М.В.Писаревой, 1987).

Схематическое строение Мутновской геотермальной системы (по А.И.Сережникову, 1987)

1 - магматический очаг Мутновского вулкана; 2 - зона флюида; 3 перегретые воды; 4 зоны пара и конденсации; 5 - сухие прогретые породы; 6 магмовод вулкана Горелый; 7 - кровля олигоценовой толщи; 8 - разломы; 9 метеорные потоки; 10 восходящие потоки магматического флюида.

Р-Т диаграмма (изоплеты в мас.%) растворимости кремнезема в воде по Кеннеди [1950] с незначительной экстраполяцией.

Пик растворимости наблюдается в жидкой воде вблизи зоны перехода воды в газообразное состояние.

Минимальная растворимость наблюдается в области пара.

Общая тенденция такова, что растворимость SiO₂ в воде падает с понижением температуры и давления

Диаграмма изменения растворимости SiO₂ при прорыве из пластичной зоны в хрупкую (интерпретация данных Кеннеди [1950].

РЕОЛОГИЯ КОРЫ И МАНТИИ

Без исключения для всех эндогенных процессов важны реологические свойства коры мантии и всей Земли в целом. Для каждых конкретных геодинамических обстановок характерны свои реологические условия

РЕОЛОГИЯ (от греческого рέос, «течение, поток» и -логия) раздел физики изучающий деформации и текучесть вещества. Любой кристалл или агрегат кристаллов при определённых условиях может быть пластически деформирован. Пластическая деформация кристаллов реализуется посредством направленного движения в нём дислокаций и вакансий. Под действием на кристалл внешней силы в объёме кристалла появляются напряжения, которые снимаются

Последовательность изменения реологических свойств литосферы в процессе распада континента – рифтообразования (Corti et al., 2003)

- 1- профиль молодой стабильной четырехслойной литосферы
- 2 утоненной трехслойной литосферы 3 океанизированной утоненной
- литосферы. **σ**_м - прочность нижней части литосферной мантии.

Точки на графиках и вертикальные штриховые линии показывают максимальную прочность литосферных слоев. Горизонтальные штриховые линии — их глубину от поверхности.

С-мощность коры; L-мощность литосферы.

СОВРЕМЕННЫЕ ГИДРОТЕРМАЛЬНЫЕ СИСТЕМЫ

Паровые зоны и их динамика

Физические свойства вмещающих пород и их влияние на динамику магмы

Рис. 3. Примеры прочностных профилей из [14] для молодой стабильной четырехслойной литосферы – 1, утоненной трехслойной литосферы – 2 и океанизированной утоненной литосферы – 3 с дополнениями автора. $\sigma_{\rm M}$ – прочность нижней части литосферной мантии. Точки на графиках и вертикальные штриховые линии показывают максимальную прочность литосферных слоев, а горизонтальные штриховые линии – их глубину от поверхности. C – мощность коры; L – мощность литосферы. Справа – разрез литосферы, прогреваемой мантийными флюидами (интерпретация прочностных графиков). Стрелки показывают поток флюидов, который при достижении прочной литосферы расходится по латерали.

