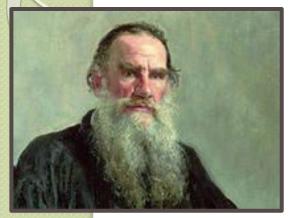
# Решение задач на оптимизацию методами математиче иза

Математика — это язык, на котором написана книга природы.

Галилео Галилей

#### Задание І


Найдите производные предложенных функций

$$(x)^{I} = (x^{2})^{I} = (x^{3})^{I} = (1/x)^{I} = (1/x)^{I}$$

#### Задание 2

- •Составьте алгоритм вычисления наибольшего и наименьшего значения функции f(x) на отрезке [a;b]
- 1. Найти  $f^I(x)$
- 2. Найти точки, в которых  $f^{I}(x) = 0$
- 3. Выбрать среди них те, что  $x_0 \in [a; b]$
- 4. Определить вид точки и найти значение функции в этой точке.

## Рассказ Л.Н. Толстого Много ли человеку земли надо





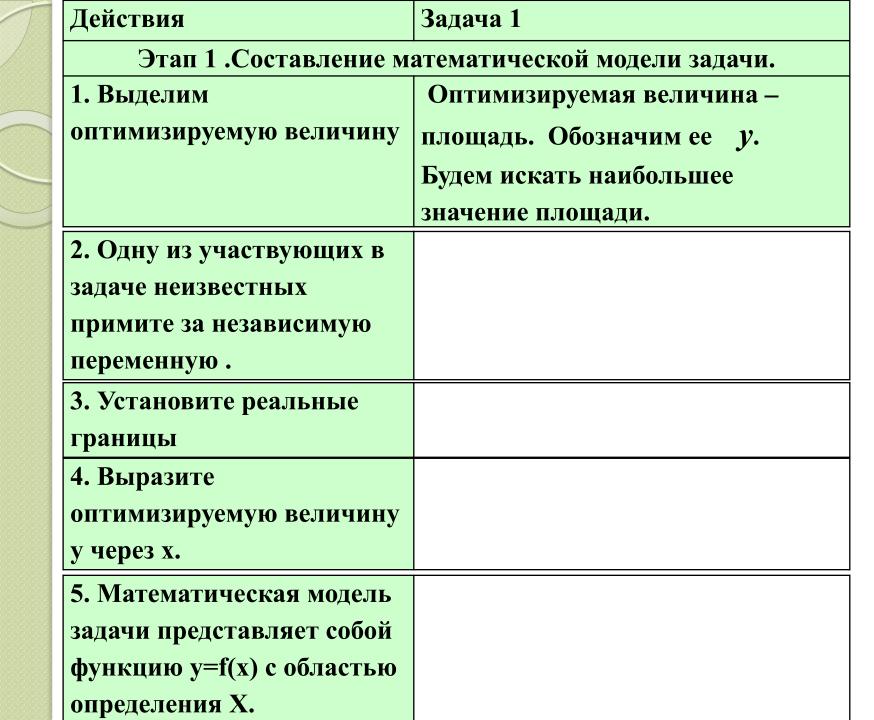
#### Задача І

Каким должен быть прямоугольник, чтобы его площадь при заданном периметре Р была максимальной. Этапы решения практических задач

- I) Математическое моделирование;
- 2) Работа с составленной моделью;
- 3) Критическое осмысление полученных результатов.

## Составление технологической карты решения задач на оптимизацию

| Действия                                          | Задача 1 | Задача 2 | Задача З |  |
|---------------------------------------------------|----------|----------|----------|--|
| Этап 1 .Составление математической модели задачи. |          |          |          |  |
| 1.                                                |          |          |          |  |
| 2.                                                |          |          |          |  |
| 3.                                                |          |          |          |  |
| 4.                                                |          |          |          |  |
| 5.                                                |          |          |          |  |
| Этап 2. Работа с составленной моделью.            |          |          |          |  |
| 1.                                                |          |          |          |  |
| 2.                                                |          |          |          |  |
| 3.                                                |          |          |          |  |
| Этап 3. Анализ решения.                           |          |          |          |  |
|                                                   |          |          |          |  |


## Составление технологической карты решения задач на оптимизацию

| Действия                                          | Задача 1 | Задача 2 | Задача 3 |  |  |
|---------------------------------------------------|----------|----------|----------|--|--|
| Этап 1 .Составление математической модели задачи. |          |          |          |  |  |
| 1.                                                |          |          |          |  |  |

ширина

длина

Периметр= (длина +ширина) \*2



| Действия                               | Задача 1 |  |
|----------------------------------------|----------|--|
| Этап 2. Работа с составленной моделью. |          |  |
| 1. Находим                             |          |  |
| производную                            |          |  |
| функции                                |          |  |
| 2. Находим точки                       |          |  |
| экстремума                             |          |  |
| 3. Определяем вид                      |          |  |
| точки и находим                        |          |  |
| соответствующее                        |          |  |
| значение функции                       |          |  |

#### Этап 3. Анализ решения.

1. Конкретный ответ на вопрос задачи с учетом условий

Ответ.

Это квадрат со стороной 10 км.

Рано или поздно всякая правильная математическая идея находит применение в том или ином деле.

А.Н. Крылов