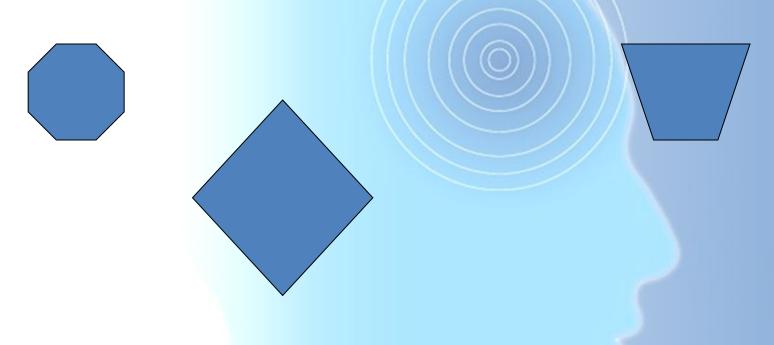
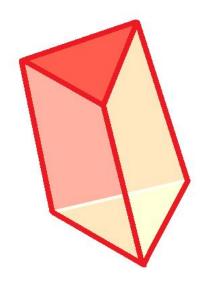
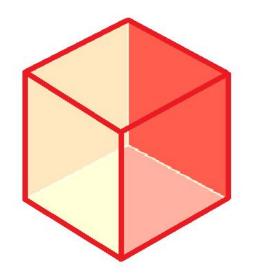
Площадь полной поверхности призмы

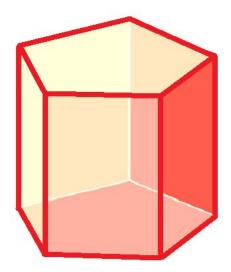


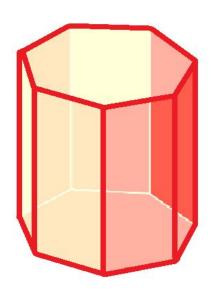
Вопросы для повторения

- 1. Что называют призмой?
- 2. На рисунке показать основания, боковые грани, ребра, вершины, высоту, диагональ призмы.
- 3. Какая призма называется правильной?
- 4. Что называют диагональным сечением?





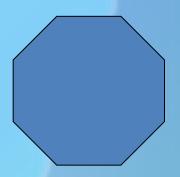




Определение

• Площадью полной поверхности призмы называется сумма площадей всех её граней

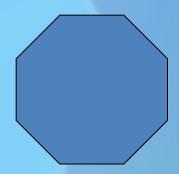
Sп.п

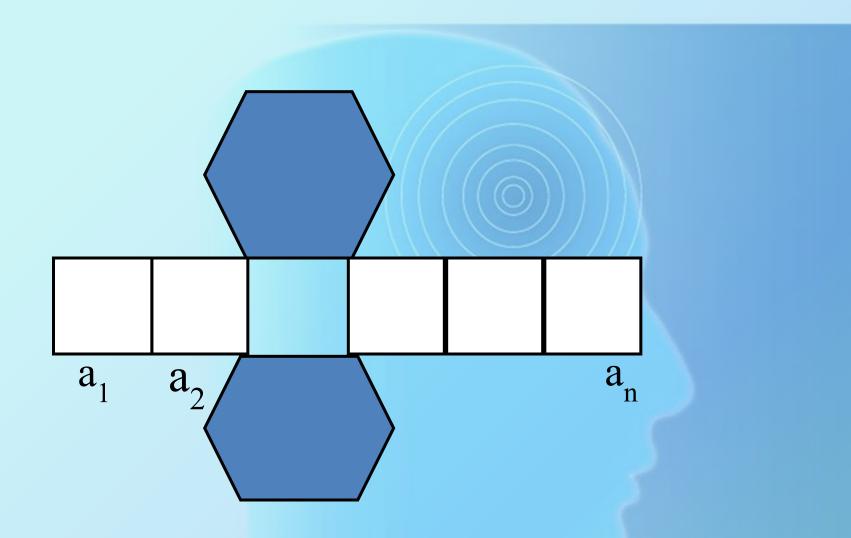


Определение

• Площадью боковой поверхности призмы называется сумма площадей всех её боковых граней

Sook





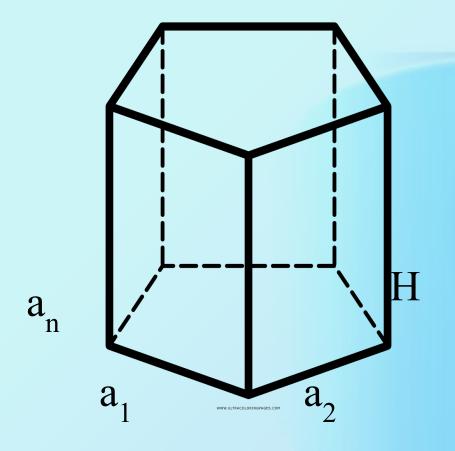
Запом

H1

$$S_{\Pi,\Pi} = S_{\text{бок}} + 2S_{\text{осн}}$$

Теорема

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту
 (длину бокового ребра)



Дано: прямая призма а_{1,}а_{2,}а₃ ... стороны основания Н- высота Доказать:

Доказательство:

• Боковые грани прямой призмы — прямоугольники

$$S_{\text{бок}} = S_1 + S_2 + S_3 + \dots + S_n =$$
 $= a_1 H + a_2 H + a_3 H + \dots + a_n H =$
 $= (a_1 + a_2 + a_3 + \dots + a_n) H =$
 $= P_{\text{осн}} \cdot H \quad \text{Ч. т. } \mathcal{A}$
 $S_{\text{бок}} = P_{\text{осн}} \cdot H$

Решить задачу

• В правильной п — угольной призме сторона основания равна а и боковое ребро Н. Вычислите площадь полной поверхности призмы,

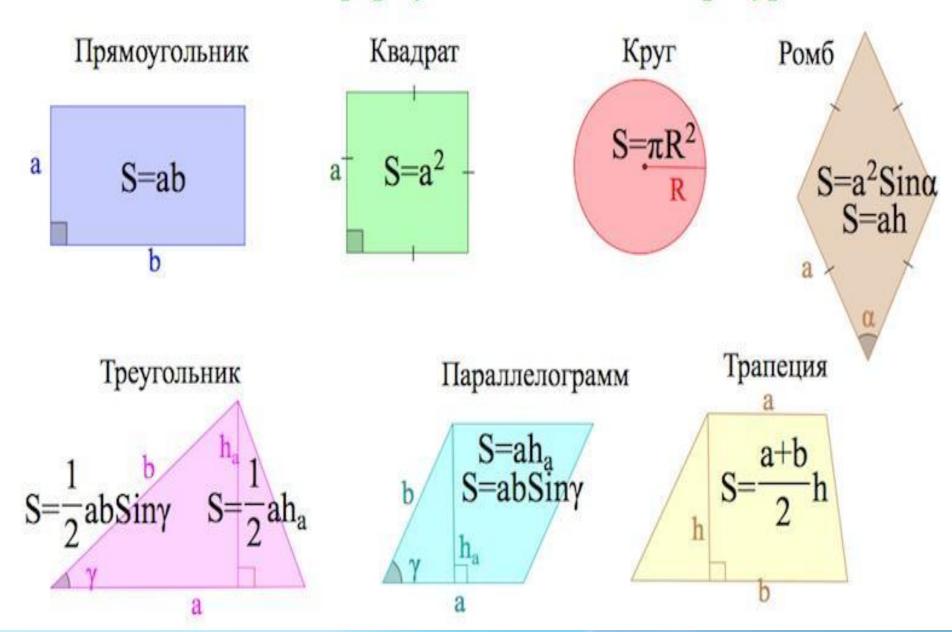
если:

• a) n = 4, a = 6 cm, H = 10 cm

- Решить задачу
- •Найти площадь полной поверхности прямой призмы, основанием которой служит параллелограмм со сторонами 6 и 12 см, угол между ними 30^0
- •Высота призмы 15 см

угол	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin α	0	$\frac{1}{2}$	$rac{\sqrt{2}}{2}$	$rac{\sqrt{3}}{2}$	1	$rac{\sqrt{3}}{2}$	$rac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos α	1	$\frac{\sqrt{3}}{2}$	$rac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-rac{1}{2}$	$-rac{\sqrt{2}}{2}$	$-rac{\sqrt{3}}{2}$	-1
tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-rac{\sqrt{3}}{3}$	0
ctg a	8	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	8

Основные формулы для площадей фигур



Вопросы для закрепления

- 1. Что называют площадью полной поверхности призмы?
- 2. Что называют площадью боковой поверхности призмы?
- 3. Какие фигуры могут служить основанием призмы?
- 4. По какой формуле находится площадь боковой поверхности прямой призмы?