
Лекция 3

OTC

Синтез приоритетов в неполной иерархии.

Некоторые связи между двумя соседними уровнями отсутствуют.

В этом случае в расчёты включают специальную матрицу (которую называют структурная матрица), отражающую структуру связей в иерархии.

Структурная матрица.

$$K_1 \qquad K_2 \qquad \dots \qquad K_n$$

$$L=$$

Где R_i - число элементов-потомков элемента K_i , N - число связей между уровнями.

Пример: неполная трёхуровневая иерархия

		Φ]			•	•					
		- 5					Φ	К1	К2	ЛП	Н	ЛП Ф
	K1		К2				К1	1	1	1		0,5
A1	A2	A3	A4	A5			К2	1	1	1		0,5
רי	AZ	AJ		_ A3								
К1	A1	A2	A3	A4	A5	ЛП	НЛП К1	K2	A4	A5	ЛП	НЛП К2
								A4	1	1	1	0,5
A1	1	1	1	1	1	1	0,2		1	1		
A2	1	1	1	1	1	1	0,2	A5	1	1	1	0,5
A3	1	1	1	1	1	1	0,2					
A4	1	1	1	1	1	1	0,2					
A5	1	1	1	1	1	1	0,2					

Строим вспомогательные матрицы

$$A=$$

Синтез приоритетов

Пример неэффективности метода парных сравнений

Ф	К1	К2	ЛП	НЛП Ф
К1	1	3	1,732	0,75
К2	1/3	1	0,577	0,25

K1	A1	A2	ЛП	НЛП К1
A1	1	3	1,732	0,75
A2	1/3	1	0,577	0,25

К2	A1	A2	ЛП	НЛП К2
A1	1	1/3	0,577	0,25
A2	3	1	1,732	0,75

A1 ->A2

Пример неэффективности метода парных сравнений

Φ	К1	К2	ЛП	НЛП Ф
К1	1	3	1,732	0,75
К2	1/3	1	0,577	0,25

K1	A1	A2	A3	НЛП К1
A1	1	3	1/7	0,15
A2	1/ 3	1	1/9	0,066
A3	7	9	1	0,784

К2	A1	A2	A3	НЛП К2
A1	1	1/3	3	0,28
A2	3	1	9	0,69
A3	1/3	1/9	1	0,08

A3 -> A2 -> A1

Метод попарных сравнений может быть неудобен в некоторых случаях:

- Когда альтернативы для сравнения поступают не одновременно, а через промежутки времени;
- Когда в задаче большое количество альтернатив (более 8).
- Кроме того, метод парных сравнений иногда выдаёт некорректные результаты при добавлении новых альтернатив (как в предыдущем примере).

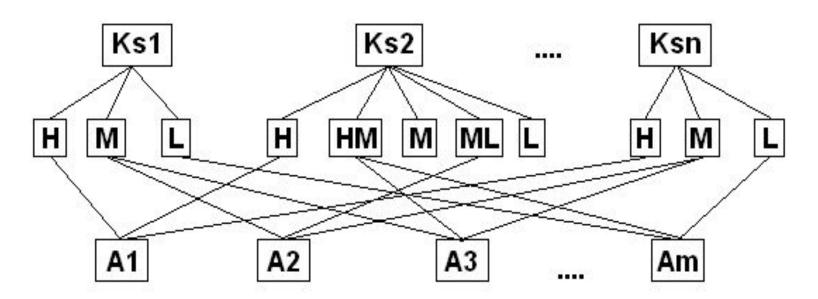
Стандарт устанавливает уровень качества объекта относительно критерия качества. Например, критерий «ликвидность» может задавать три стандарта (уровня качества): высокий, средний, низкий.

Основная шкала стандартов: {H, M, L}. Дополнительная шкала: {HH, HM, ML, LL}

Стандарты стараются делать не абстрактными, а отождествлять их с некоторыми реальными объектами.

Например, по критерию «надёжность» при сравнении автомобилей можно использовать стандарты {H, M, L}:

H - BMW


M - KIA

L — Lada.

 Стандарты помещают в иерархию, вводя для них дополнительный уровень — между критериями и объектами, которые сравниваются по этим критериям (альтернативами).

 Альтернативы оценивают по критериям, связывая уровни стандартов и альтернатив. Фокус

....

Чтобы получить векторы приоритетов альтернатив по критериям, попарно сравнивают стандарты:

Стандарты	Н	M	L	ЛП	НЛП
Н	1	3	7	2,76	0,67
M	1/3	1	3	1	0,24
L	1/7	1/3	1	0,36	0,09

Вектор приоритетов: **H=0,67**, **M=0,24**, **L=0,09**.

Далее составляют вектор приоритетов для альтернатив по данному критерию. Числовые значения стандартов, соответствующих альтернативам задачи, записывают в вектор — т.о. получают вектор ЛП. Затем этот вектор нормируют,

получая НЛП.

	ЛП Ki	НЛП Кі
A1	H(0,67)	
A2	M(0,24)	
An	H(0,67)	

Дальнейшие расчеты по алгоритму МАИ: после того, как получили векторы локальных приоритетов для всех элементов иерархии, рассчитывают глобальные приоритеты.

A =

- численное значение стандартов, соответствующее альтернативе *Ai* по данному критерию.

Для получения нормированных приоритетов: , где

[S] =

Сравнение объектов методом копирования

Разделим альтернативы на два множества:

```
A = \{A1, A2, ..., An\}
```

Пример:

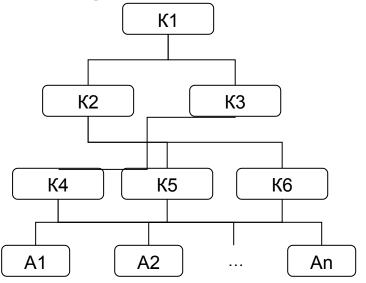
Пусть для анализа поступают две новые альтернативы, свойства которых по данному критерию полностью идентичны свойствам альтернативы А3

нормируем, получаем:

Оценка согласованности иерархии

<u>Шаг 1.</u> Подсчет максимального собственного числа матрицы парных сравнений:

где - нормированный вектор локальных приоритетов (НЛП), - единичный вектор-строка.


Шаг 2. Подсчитывается индекс однородности:

n - это размер матрицы(размерность)

Шаг 3. Рассчитывается оценка однородности.

если <= 0,1 – то оценки согласованы, если попадает в промежуток (0,1;0,2] то оценки плохо согласованы, если > 0,2 – оценки не согласованы.

Оценка согласованности иерархии

Определяем индекс однородности для каждого уровня иерархии:

ИО1 – для первого уровня (для элементов находящихся под К1)

{ИО2, ИО3} – для второго уровня (для элементов находящихся под К2 и К3)

 $\{ \text{ИО4, ИО5, ИО6} \}$ — для третьего уровня (для элементов

W1, W2, W3 – векторы НЛП для элементов К1, К2 и К3.

Однородность иерархии удовлетворительна для.

Методы повышения согласованности.

- 1.Привлечение нескольких экспертов. Оценка выставляется:
- Путём обсуждения
- Как среднее геометрическое
- Как среднее взвешенное:

где

- 2. Использование абсолютных данных.
- 3. Использование стандартов.