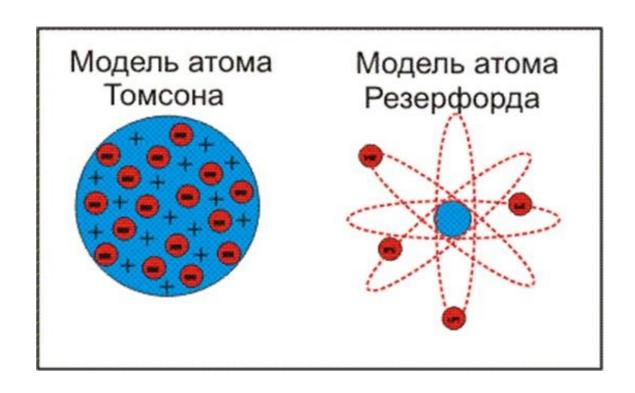
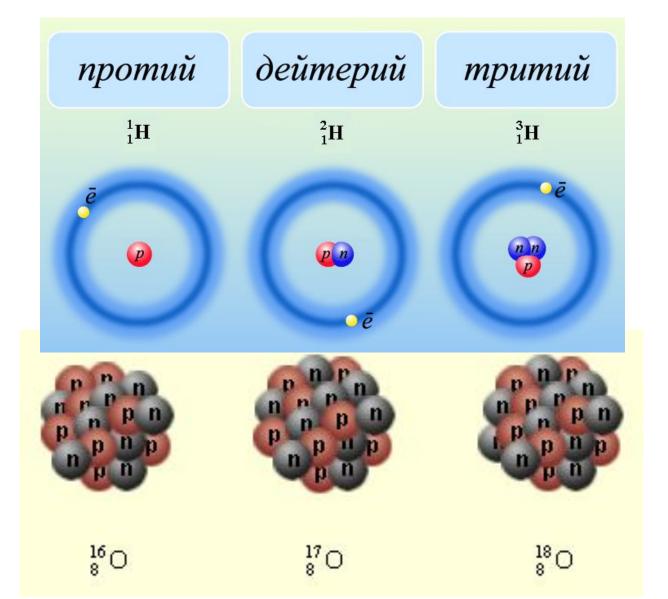

Тема: «Ядерные силы. Дефект масс. Энергия связи»


Актуализация знаний

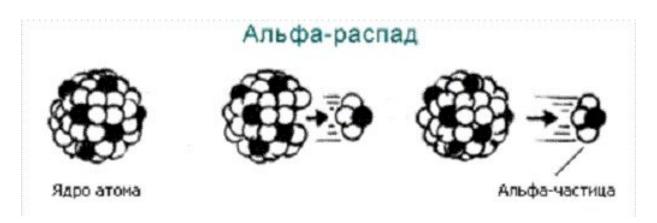
- 1) Что такое радиоактивность?
 - Проанализируйте, что изображено на рисунке?


Актуализация знаний

- 3) Какие виды радиоактивных распадов существуют
- 4) Сравните модели строения атома

Актуализация знаний

5) Что отражено на рисунках?



Обозначения

прото нейтро H


_₁ e

элетро

α – распадом называется самопроизвольный распад атомного ядра на α – частицу (ядро атома гелия) и ядро-продукт. Продукт а – распада оказывается смещенным на две клетки к началу периодической системы Менделеева.

$$_{Z}^{M}X \rightarrow_{Z-2}^{M-4}Y + _{2}^{4}He$$

β – распадом называется самопроизвольное превращение атомного ядра путем испускания электрона. Ядро – продукт бета-распада оказывается ядром одного из изотопов элемента с порядковым номером в таблице Менделеева на единицу большим порядкового номера исходного ядра.

$$_{Z}^{M}X \rightarrow_{Z+1}^{M}Y +_{-1}^{0}e$$

у – излучение не сопровождается изменением заряда; масса же ядра меняется ничтожно мало.

$$_{Z}^{M}X^{*} \rightarrow _{Z}^{M}X + _{0}^{0}\gamma$$

Задачи на повторение

1. Укажите состав атома

$$\frac{56}{26}Fe$$

$$\frac{238}{92}U$$

2. Найдите частицу, которая образуется в результате ядерной реакции:

$$^{23}Na + ^{2}H \rightarrow ^{24}_{12}Mg + ^{A}ZX$$

Решение

- 1. Протонов 26, нейтронов 56-26=30
- 2. Протонов 92, нейтронов 238-92=146
- 3.

$$^{23}_{11}Na + ^{2}_{1}H \rightarrow ^{24}_{12}Mg + ^{A}_{Z}X$$

• А=23+2-24=1, Z=11+1-12=0, нейтрон

• В результате альфа-распада изотопа азота

$$\frac{16}{7}N$$

• образуется изотоп бора ${}^{12}_{5}B$ Запишите реакцию .

Решение

$${}_{7}^{16}N \rightarrow {}_{2}^{4}He + {}_{5}^{12}B$$

Ядерные силы

Ядерные силы - силы взаимодействия между нуклонами (протонами и нейтронами).

СВОЙСТВА

- Являются только силами притяжения.
- 2. Во много раз больше кулоновских сил.
- Не зависят от наличия заряда.
- Короткодействующие (r = 2,2 * 10-15 м).

Энергия связи. Дефект масс.

Дефект масс – разность между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра.

 $\Delta m = (Zm_p + Nm_n) - M_g$ $\Delta m - Qeфект массы$ $Z - Число протонов в ядре <math>m_p - Macca протона$ $N - Число нейтронов <math>m_n - Macca нейтрона$ $M_g - Macca ядра$

Энергия связи.

Энергия связи — минимальная энергия, необходимая для полного расщепления ядра на отдельные нуклоны.

$$\Delta E_0 = \Delta mc^2$$

 ΔE_0 — энергия связи ядра, Δm — дефект масс

Значения физических величин для решения задач:

Таблица 2.1 Некоторые характеристики элементарных частиц

Название частицы	Символ	Масса покоя		Заряд	
		абсолютная, кг	относи- тельная	электриче- ский, Кл	относи- тельный
Протон	$\frac{1}{1}p$	1,673 · 10 ⁻²⁷	1,00728 ≈ 1	+1,602 · 10 ⁻¹⁹	+1
Нейтрон	$_{0}^{1}n$	1,6 7 5 · 10 ⁻²⁷	1,00867≈1	0	0
Электрон	$_{-1}^{0}e(\overline{e})$	9,109 · 10 ⁻³¹	0,000549	-1,602 · 10 ⁻¹⁹	-1

1 a.e.м. =
$$1,66 \cdot 10^{-27}$$
 кг.