Вариант 2_1

Приводимые ниже дифференциальные уравнения описывают движение тела по орбите около двух много более тяжелых тел. Примером может быть капсула космического аппарата на орбите около Земли и Луны. Три тела определяют в пространстве плоскость и двумерную систему координат в этой плоскости. Начало находится в центре масс системы двух тяжелых тел, за ось x берется прямая, проходящая через эти два тела, а расстояние между ними принимается за единицу. Таким образом, если μ - отношение массы Луны к массе Земли, то Луна и Земля размещаются в точках с координатами $(1 - \mu, 0)$ и $(- \mu, 0)$. Масса аппарата пренебрежимо мала по сравнению с массами планет; положение его определяется координатами x(t), y(t), которые удовлетворяют уравнениям

$$\dot{x} = 2y + x - \frac{\mu_*(x + \mu)}{r_1^3} - \frac{\mu(x - \mu_*)}{r_2^3},$$

$$\dot{y} = -2x + y - \frac{\mu_* y}{r_1^3} - \frac{\mu y}{r_2^3},$$

Вариант 2_2

$$r_1 = ((x + \mu)^2 + y^2)^{1/2}, \quad r_2 = ((x - \mu_*)^2 + y^2)^{1/2},$$

 $\mu_* = 1 - \mu, \quad \mu = 1/82.45.$

Начальные условия

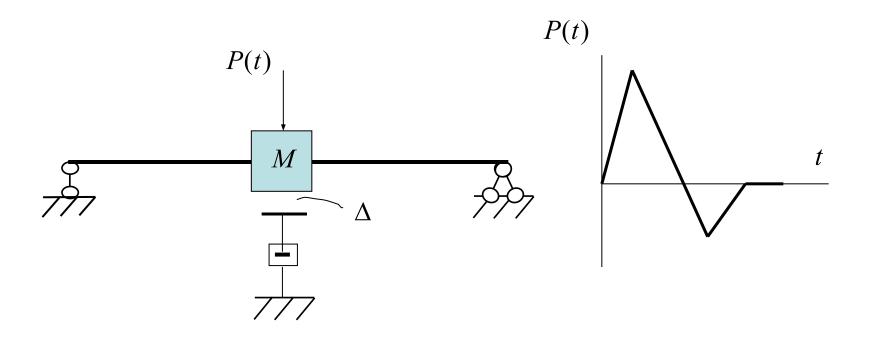
$$x(0) = 1,2$$
 $\dot{x}(0) = 0,$
 $y(0) = 0$ $\dot{y}(0) = -1,04935751$

приводят к периодическому решению с периодом T = 6,19216933.

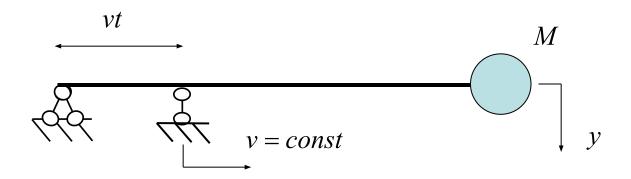
Анализ задачи сводится к следующему:

- 1) Вычислите решение с указанными начальными условиями и проверьте, что оно периодическое с приведенным выше периодом.
- 2) Постройте траекторию движения космического аппарата и установите, насколько близко он подходит на этой орбите к поверхности Земли?

В уравнениях расстояния измеряются от центров Земли и Луны. Считайте, что Луна находится на среднем расстоянии 384000 км от Земли, а Земля представляет собой шар радиусом 6370 км.



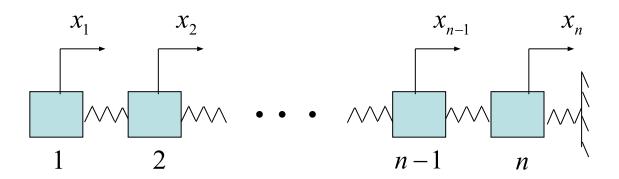
Исследуйте влияние начального зазора Δ на максимальное перемещение балки.



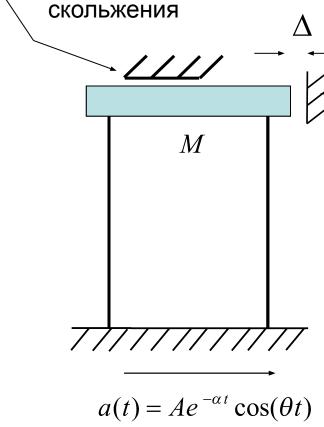
Правая опора перемещается с постоянной скоростью v.

Исследуйте влияние скорости v на максимальное перемещение массы М при колебании из начального состояния

$$y(0) = y_0, \quad y(0) = 0.$$



Система из n одинаковых масс и n одинаковых пружин подвергается мгновенному ударному воздействию. В момент t=0 первая масса получает скорость v . При этом появляется волна сжатия, распространяющаяся вдоль цепочки масс и пружин. Принимая n=10, определите момент времени t_* , при котором придет в движение последняя масса. Постройте график зависимости от времени усилия в последней пружине на интервале $0 \le t \le 2t_*$.



 $\alpha > 0, \ \theta > 0.$

- начальный зазор

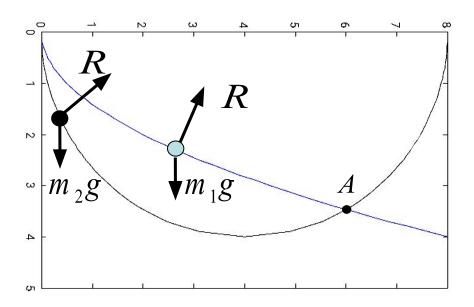
не вполне упругий ограничитель с коэффициентом восстановления скорости $\,k < 1\,$

Исследуйте влияние параметра k на движение системы.

Вариант 38_1

Несвободное движение материальной точки

Два колечка двигаются из состояния покоя без трения по проволокам, одна из которых имеет форму параболы, а другая - форму круга.



Вариант 38_2

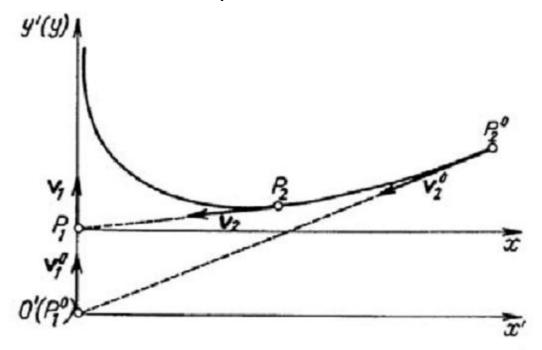
Задание:

- 1. Постройте зависимости координат колечек, их полных скоростей и реакций проволок от времени при $m_{_1}=m_{_2}$.
- 2. Как зависит время, необходимое каждому колечку, для достижения точки *A* от отношения их масс?
- 3. При каком условии колечки одновременно придут в точку А?

Теорию и пример см. в книге Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики, Т.2, М.: Наука, стр.117-120.

Вариант 42_1

Задача о встрече человека с собакой



Условие задачи. Человек идет вдоль линии O'y' с постоянной скоростью

- $^{\mathcal{V}_1}$. В момент t=0 он, находясь в точке $O'(P_1^0)$, зовет свою собаку. Собака в тот же момент устремляется из точки P_2^0 с постоянной скоростью
- v_2 , вектор которой направлен все время по касательной к траектории движения в сторону хозяина.

Бариант 42_2

Математическая модель. Человек и собака представляются двумя частицами $-P_1$ и P_2 . Траектория движения частицы P_2 задается в *подвижной* системе координат $P_1 xy$ двумя уравнениями $(x \ u \ y - компоненты скорости <math>v_2$)

$$x = -\frac{v_2 x}{\sqrt{x^2 + y^2}}$$
, $y = -v_1 - \frac{v_2 y}{\sqrt{x^2 + y^2}}$

с начальными условиями $dd\tilde{\epsilon}xt$, $y=y_0$ =0.

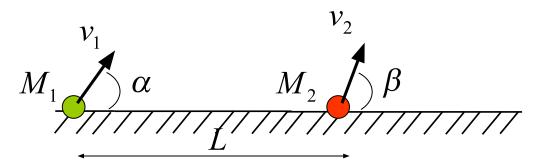
Неподвижная система координат O'x'y' связана с подвижным базисом P_1xy соотношениями $x'=x, \quad y'=v_1t+y.$

Задание:

- 1. При $v_2 = 2v_1$ постройте траекторию движения частицы P_2 в неподвижной системе координат и определите место и время встречи с частицей P_1 .
- 2. Постройте график изменения расстояния между частицами P_1 и P_2 вплоть до момента встречи.
- 3. Аналитическое решение показывает, что при $v_2 \le v_1$ точки не встречаются. Полагая $v_2 = v_1$ проверьте этот факт численным решением.

Вариант 43_1

Движение двух масс в гравитационном поле

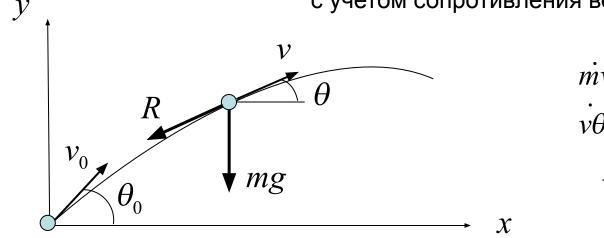


В момент t=0 со скоростью v_1 под углом α к горизонту вылетает цель M_1 . Через промежуток времени τ на перехват запускается ракета массой M_2 . Движение происходит в однородном поле силы тяжести с учетом аэродинамического сопротивления $R(t)=c\rho s v^{5/2}$, где c=0,13 , s-1 площадь поперечного сечения тела, $\rho(h)$ - средняя плотность атмосферы на высоте n=0 над Землей :

ķ ĕ	0	0,5	1	3	5	8	10	12	15	20
$\rho, e\check{a}/\check{e}^3$	1,225	1,167	1,112	0,909	0,736	0,526	0,414	0,312	0,195	0,089

Вариант 43_2

Математическая модель движения точки в гравитационном поле с учетом сопротивления воздуха



$$\dot{m}v = -R - mg\sin\theta,$$

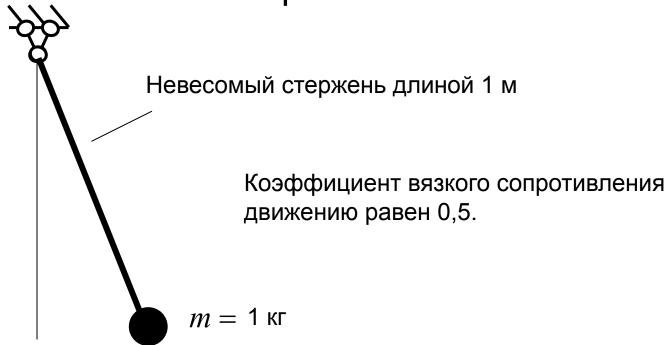
$$\dot{v}\theta = -g\cos\theta$$

$$v(0) = v_0, \theta(0) = \theta_0$$

Определите координаты поражения цели в зависимости от угла вылета ракеты при постоянной плотности атмосферы (на Земле).

Мяч брошен вертикально вверх. Что больше: время подъема или время падения? Постройте зависимость разницы значений этих параметров от сопротивления воздуха.

На анимационной картине должен присутствовать счетчик времени.



В нижнем положении в состоянии покоя маятнику сообщается начальная угловая скорость v_0 . Проанализируйте движение маятника при различной начальной скорости v_0 из диапазона 5 -10 рад/с. Постройте соответствующие фазовые портреты системы. Подберите минимальное значение v_0 , при котором маятник выполнит полное вращение из начального положения хотя бы один раз.