Лекция 4

Трансформаторы. Автотрансформаторы.

- 1) Назначение и роль трансформаторов в ЭЭС.
- 2) Типы и харак<mark>те</mark>ристики трансформаторов.
- 3) Системы охлаждения.
- 4) Тепловая диаграмма.
- <u>5) Нагрев трансформатора при неравномерном</u> графике нагрузки.
- 6) Износ изоляции.
- 7) Нагрузочная способность.

Трансформатор - один из основных устройств энергетической системы, предназначенный для преобразования электрической энергии одного напряжения в электроэнергию другого напряжения.

Электроэнергия на пути от генератора до электроприемника претерпевает большое количество трансформаций.

Электроэнергию выгоднее передавать на высоких напряжениях (для снижения потерь).

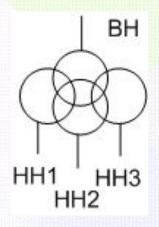
Трансформаторы изготавливают:

1) Трехфазными

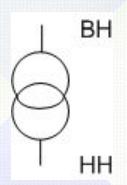
Однофазными

Требования, предъявляемые к трансформаторам:

- Трансформатор должен быть надежным в эксплуатации;
- Экономичным;
- Заложенные расчетом потери не должны превышать допустимых пределов;
- Трансформатор должен удовлетворять условиям параллельной работы;
- Не перегреваться;
- Выдерживать допускаемое нормами превышение напряжения и внешние короткие замыкания при обусловленных стандартом значениях кратности и длительности протекания тока;
- Допускать регулирование напряжения.


Классификация трансформаторов

- 1.В трансформаторах электроэнергия передается электромагнитным путем(за счет магнитной связи),а в автотрансформаторах электромагнитным путем и электрическим.
- 2. По назначению бывают повышающие или понижающие.
- **3.С регулированием напряжения под нагрузкой (РПН).** Позволяет дистанционно регулировать напряжение.


Переключатель без возбуждения (ПБВ) - регулирование напряжения путем переключения ответвлений обмоток без возбуждения после отключения всех его обмоток от сети.

- 4.По количеству обмоток двухобмоточные, трехобмоточные.
- 5. С расщеплением обмоток, без расщепления обмоток.

С расщеплением обмоток

Без расщепления обмоток

6.По системе охлаждения:

- I. M
- ΙΙ. Д
- III. МЦ
- IV. НМЦ
- V. ДЦ
- VI. НДЦ
- VII. ⊔
- VIII. НЦ

Для трансформаторов и автотрансформаторов установлены условные обозначения, в которых последовательно (слева направо) приводится следующая информация:

- 1. Вид электротехнического устройства(А-автотрансформатор, без обозначения -трансформатор).
- 2. Число <mark>фаз (</mark>O однофазный, T трехфазный).
- 3. Наличие расщепленной обмотки низшего напряжения Р.
- 4. Условное обозначение видов охлаждения.
- 5. Число обмоток (без об<mark>означен</mark>ия двухобмоточный, Т трехобмоточный).
- 6. Наличие системы регулировании напряжения Н.
- 7. Исполнение (3 Защитное, Г грозоупорное, Л с литой изоляцией).
- 8. Специфическая область применения (С для систем собственных нужд электростанций, Ж для электрификации железных дорог).
- 9. Номинальная мощность, кВА.
- 0. Класс напряжения обмотки ВН, кВ.
- 1. Климатическое исполнение по ГОСТ 15150-69.
- 2. Категория помещений по ГОСТ 15150-69.

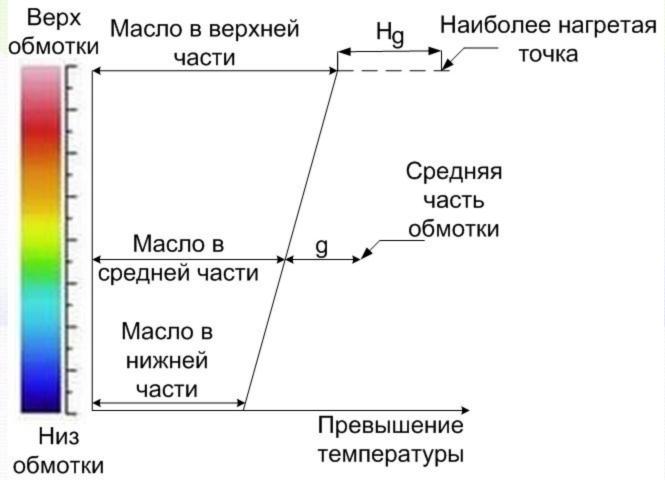
Технические параметры трансформаторов:

- 1) Номинальная мощность S_{ном} , кВА, МВА.
- 2) Номинальное напряжение обмотки– U_{номВН}, U_{номНН}
- 3) Напряжение короткого замыкания U_к,% ток, который нужно подвести к обмотке, чтобы в другой обмотке протекал номинальный ток (от 5-15 %).
- 4) P_x потери холостого хода.
- 5) Р_к потери короткого замыкания.
- 6) Ток XX -это ток первичной обмотки ненагруженного трансформатора при номинальном напряжении. I_x, %.

Системы охлаждения трансформаторов

Системы охлаждения определяются мощностью на которую рассчитаны. Источник выделения тепла – обмотка. Определяется классом изоляции.

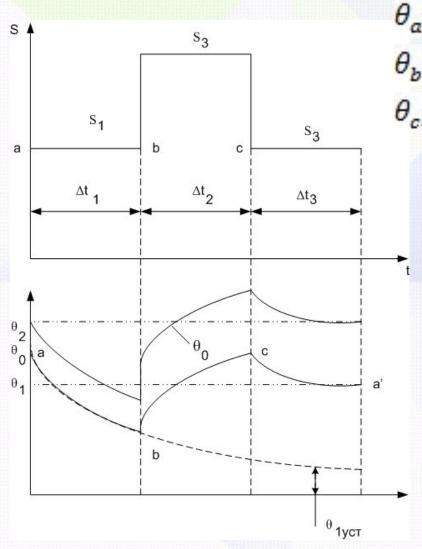
Системы охлаждения:


	Обозначение системы	
Вид системы охлаждения трансформатора	охлаждения	
	По ГОСТ	По МЭК
	11677-85	
Естественная циркуляция воздуха и масла	M	ONAN
Принудительная циркуляция воздуха и естественная циркуляция масла	Д	ONAF
Естественная циркуляция воздуха и принудительная циркуляция масла	N.41.1	OFANI
с ненаправленным потоком масла	МЦ	OFAN
Естественная циркуляция воздуха и принудительная циркуляция масла	118411	ODAN
с направленным потоком масла	НМЦ	ODAN
Принудительная циркуляция воздуха и масла с ненаправленным	пи	OFAF
потоком масла	ДЦ	UFAF
Принудительная циркуляция воздуха и масла с направленным потоком	НДЦ	ODAF
масла	ПДЦ	ODAI
Принудительная циркуляция воды и масла с ненаправленным потоком	ц	OFWF
масла	7/	OI VVI
Принудительная циркуляция воды и масла с направленным потоком	нц	ODWF
масла		

Обозначение системы охлаждения по МЭК

№ п/п		Внутреннее/ Inside	Outside /Внешнее
4	N/A	ON	AN
1	M	Oil Norm	Air Norm
		ON	AF
2	Д	Oil Norm	Air Force
		Естественная циркуляция масла	Воздушное с принудительной
			циркуляцией воздуха(дутьё)
		OF	AN
		Oil Force	Air Norm
3	МЦ	Принудительная циркуляция	Естественная циркуляция воздуха
		масла с ненаправленным	
		потоком масла	
		OD	AN
		Oil Direct	Air Norm
4	НМЦ	Принудительная циркуляция	Естественная циркуляция воздуха
		масла с направленным потоком	
		масла	

B 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	987 PRESIDENT FROM PROPERTY PR			
5		OF AF		
	ДЦ	Oil Force Air Force		
		Принудительная циркуляция Воздушное с принудительной		
		масла с ненаправленным циркуляцией воздуха(дутьё)		
		потоком масла		
		OD <mark>AF</mark>		
		Oil Direct Air Force		
6	НДЦ	Принудительная циркуляция Воздушное с принудительной		
		масла с направленным потоком циркуляцией воздуха(дутьё)		
		масла		
		OF WF		
7	Ц	Oil Force Water Force		
		Принудительная циркуляция Принудительная циркуляция воды		
		масла с ненаправленным		
		потоком масла		
8		OD WF		
	нц	Oil Direct Water Force		
		Принудительная циркуляция Принудительная циркуляция воды		
		масла с направленным потоком		
		масла		


Схема распределения температуры

Hg –разница температур между наиболее нагретой точкой и маслом в верхней части обмотки.

g- разница между средним превышением температуры, измеренным по сопротивлению и средним превышением температуры масла.

Нагрев трансформатора при ступенчатом графике нагрузки.

$$\begin{aligned} \theta_{ab} &= \theta_0 + (\theta_{1y} - \theta_0)(1 - e^{-\Delta t_1/\tau}) \\ \theta_{bc} &= \theta_{ab} + (\theta_{2y} - \theta_1)(1 - e^{-\Delta t_2/\tau}) \\ \theta_{ca'} &= \theta_2 + (\theta_{3y} - \theta_2)(1 - e^{-\Delta t_3/\tau}) \end{aligned}$$

 $heta_0, heta_{ab}, heta_{bc}, heta_{ca}$ — превышение температуры масла над температурой охлаждающей среды $heta_{1y}, heta_{2y}, heta_{3y}$ — превышение температуры масла над температурой охлаждающей среды в установившехся режимах

т- тепловая постоянная времени трансформатора Δt –продолжительность ступеней

Износ изоляции

Зависимость среднего срока службы изоляции

A - постоянная, $A=(1,5-7,5)\cdot 10^4$ лет

 α –коэффициент, α = 0,115

9 – температура изоляции в наиболее нагретой точке.

При номинальной температуре +98 °C

$$V_{HOM} = Ae^{-\alpha \vartheta HOM}$$

 $V=V/V_{
m HOM}={
m e}^{-lpha(artheta-artheta{
m HOM})}-$ срок службы изоляции $L=rac{1}{V}={
m e}^{lpha(artheta-artheta{
m HOM})}$ - относительный износ изоляции

Износ изоляции, когда температура изоляции не остается постоянной

$$H = \int_0^t L(t)dt$$
 - срок службы изоляции в часах, годах и т.д.

При проектировании графиков нагрузки потребителей на 5 год после ввода в эксплуатацию для потребителей II категории она не должна превышать 80 %. 3 % в год – нормальный прирост износа. После 15 лет износ начинает увеличиваться (иногда превышает нормативный).

Режим циклических нагрузок

- Режим циклических нагрузок может быть режимом систематических нагрузок или режимом продолжительных аварийных перегрузок.
- 1) Режим систематических нагрузок: режим, в течение части цикла которого температура охлаждающей среды может быть более высокой и ток нагрузки превышает номинальный, однако с точки зрения термического износа такая нагрузка эквивалентна номинальной нагрузке при номинальной температуре охлаждающей среды.
- 2) Режим продолжительных аварийных перегрузок: режим нагрузки, возникающий в результате продолжительного выхода из строя некоторых элементов сети, которые могут быть восстановлены только после достижения постоянного значения превышения температуры трансформатора.

2б)Режим кратковременных аварийных перегрузок: режим чрезвычайно высокой нагрузки, вызванный непредвиденными воздействиями, которые проводят к значительным нарушениям нормальной работы сети, при этом температура наиболее нагретой точки проводников достигает опасных значений и в некоторых случаях происходит временное снижение электрической прочности изоляции.

Бывают три категории трансформаторов:

а) Распределительный трансформатор.

Трансформатор трехфазный номинальной мощностью 2500 кВА включительно или до 833 кВА на стержень фазы и с номинальным напряжением до 35 кВ включительно, т.е. трансформатор с раздельными обмотками, понижающий до напряжения потребителя, с охлаждением типа ОN, и без переключения напряжения под нагрузкой.

б) Силовой трансформатор средней мощности.

Трансформатор с раздельными обмотками, имеющий номинальную мощность не более 100 МВА для трехфазных трансформаторов, или 33,3 МВА на стержень с обмотками, и имеющий номинальное полное сопротивление(импеданс) короткого замыкания, Z_r , благодаря ограничению плотности потока рассеяния, не превышающим величину

$$Z_r = (25 - 0.1 \cdot 3.5 \text{ /W}), \%,$$

где W – число стержней с обмотками, S_r – номинальная мощность, MBA.

в) Большой силовой трансформатор.

Трансформатор номинальной мощности более 100 MBA (трехфазный) или имеющий импеданс короткого замыкания больше установленного выше.

Существуют три режима работы

1) Нормальный режим.

Нормальными режимами работы считаются такие, на которые рассчитан трансформатор и при которых он может длительно работать при допустимых стандартами или техническими условиями отклонениях основных параметров (напряжение, ток, частота, температура отдельных элементов) и нормальных условиях работы (климат, высота установки над уровнем моря). Номинальные значения основных параметров трансформатора указаны на его щитке и в паспорте.

- 2) **Ремонтный режим** один или несколько элементов электроустановки выведено в плановый ремонт.
- 3) Аварийный режим —режим, при которых трансформаторы не могут находиться в работе длительное время, поскольку отклонение даже одного из основных его параметров от номинального значения при достаточной длительности создает угрозу повреждения или разрушения частей трансформатора.

Допустимые превышения параметров

Параметр	Допустимые значения		
Длительность превышения напряжения, не более	20 мин.	20 сек.	
Предыдущая нагрузка в отношении к номинальному току ответвления, не более		1,00	
Кратность напряжения в отношении к номинальному напряжению ответвления, не более	1,15	1,30	

Автотрансформатор

Автотрансформатор – это трансформатор у которого обмотки высшего напряжения и среднего напряжения имеют электрическую связь.

$$k_{_{\mathbf{T}\mathbf{U}\Pi}} = \frac{U_{\mathrm{BH}} \cdot U_{\mathrm{CH}}}{U_{\mathrm{CH}}}$$

Глухое заземление нейтрали

 $k_{_{\mathbf{T}\mathbf{u}\mathbf{n}}}^{}$ - коэффициент типовой мощности, т.е. какая часть электроэнергии передается магнитным путем(за счет магнитной связи). Чем меньше $k_{_{\mathbf{T}\mathbf{u}\mathbf{n}}}$, тем более выгодно применять автотрансформатор.

Преимущества АТ:

Меньший вес, меньшие габариты, меньшая стоимость, уменьшение расхода цветных металлов(меди).

Недостатки:

Нельзя использовать в сетях с изолированной нейтралью.

Режимы работы АТ.

- При выборе мощности автотрансформатора, при решении вопроса о допустимости того или иного режима, при подсчете потерь мощности и энергии в автотрансформаторе необходимо знать нагрузку каждой его обмотки, в особенности наиболее нагруженной.
- 1) Режимы, в которых мощность передается из системы высшего напряжения в систему среднего напряжения или в обратном направлении(третичная обмотка не нагружена), являются автотрансформаторными. При этих режимах передаваемая мощность не должна превышать номинальную мощность автотрансформатора.
- 2) Если третичная нагрузка также нагружена такой режим принято называть комбинированным.