Презентация по теме: «НЕФТЬ»

Подготовили: Учащейся 10-А класса Короед Ангелина Сидоров Иван Проценко Настя Микитевич Игорь

Нефть — горючая маслянистая жидкость красно — коричневого цвета, иногда почти черного цвета.

Физические свойства

- Имеет специфический запах.
- Легко воспламеняется.
- Растворима в органических растворителях.
- Не растворима в воде.

Нефть

Нефть – важнейшее полез ископаемое, настоящая клад природы.

Сырая нефть – природная легко воспламеняющаяся жидкость, которая находитс глубоких осадочных отложе и хорошо известна благодар использованию в качестве топлива и сырья для химического производства.

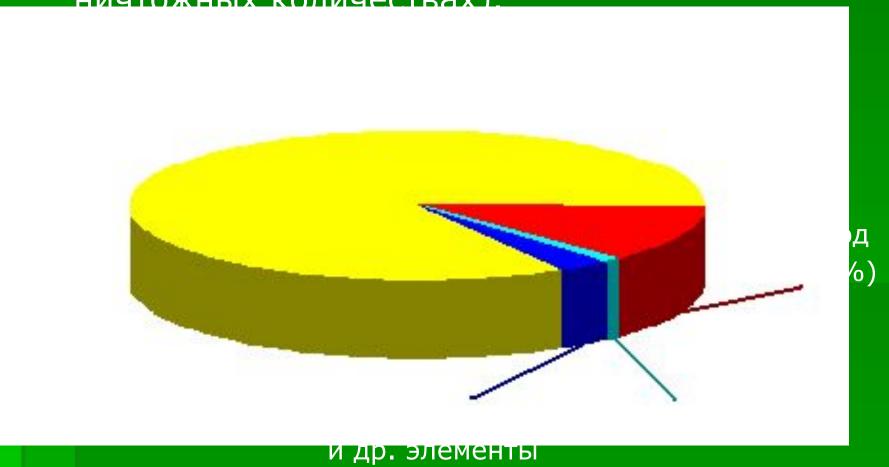
Сырая нефть

Нефть добывают и используют с 6-го тысячелетия до н.э. Наиболее древние промыслы известны на берегах Евфрата, в Керчи, в китайской провинции Сычуань. Упоминания о нефти встречаются в трудах древних историков и географов (Геродота, Плутарха, Плиния Старшего).

Но лишь в XX столетии нефть стала основным сырьем для производства топлива и множества органических соединений.

Происхождение нефти

Нефть постепенно образовывалась из останков низших животных и растений в толще различных по возрасту осадочных пород. Накопление органического материала для будущей нефти происходило в прибрежной полосе, в зоне борьбы между сушей и морем.


Д. И. Менделеев выдвигал теорию неорганического происхождения – образование нефти на основе карбидов металлов.

 $Al_4C_3 + 6H_2O \rightarrow 3CH_4 + 4Al(OH)_3$

Однако в дальнейшем эта теория не получила признания среди химиков.

Химический состав

Нефть – смесь более 1000 разных веществ (правда, большинство из них представлено в ничтожных количествах).

Плавучая бурильная установка на шельфе Охотского моря

Промышленная добыча нефти ведёт отсчёт с 1859 г., когда впервые применили разработанную Э. Дрейком технологию бурения скважин, которая используется до сих пор. Но полностью извлечь нефть из месторождений не удается (65% – максимум).

Используются три основных способа добычи нефти:

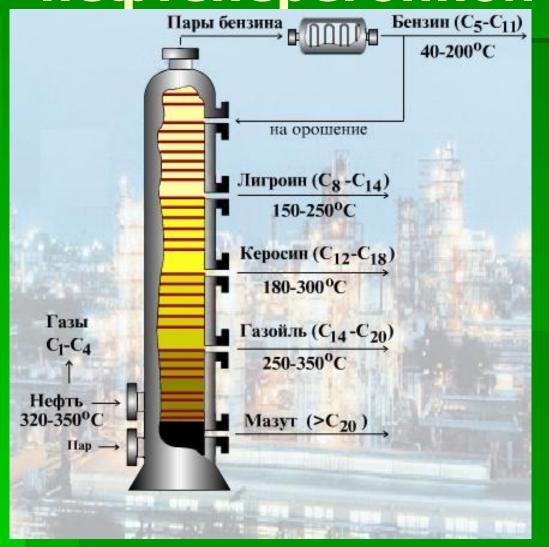
- ✓ Фонтанный нефть поднимается только под действием пластовой энергии.
- ✓ Газолифтный в скважину закачивают сжатый воздух, который выталкивает жидкость на поверхность.
- ✓ Насосный подъём осуществляется спускаемыми в скважину насосами.

Переработка нефти

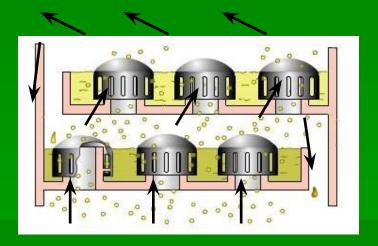
Существует несколько способов обработки нефти:

- ✓ фракционная перегонка
- ✓ термический крекинг
- ✓ каталитический крекинг
- ✓ риформинг
- ✓ гидрокрекинг
- ✓ другие процессы

Перегонка нефти


<u>Фракционная перегонка</u> – физический способ разделения смеси компонентов с различными температурами кипения.

Перегонка осуществляется в особых установках – ректификационных колоннах.


В них поступающая нефть нагревается примерно до 320° С, и разогретые продукты подаются на промежуточные уровни.

В колонне может быть от 30 до 60 расположенных с определенным интервалом поддонов и желобов, на которых и конденсируются продукты перегонки.

Схема современной нефтеперегонной установки

Устройство тарелок установки

Термический крекинг

Крекинг – это термическое разложение нефтепродуктов, приводящее к образованию углеводородов с меньшим числом атомов в молекуле.

При крекинге сырьем являются высококипящие фракции.

Каталитический крекинг

Каталитический крекинг — крекинг углеводородов под действием катализатора (в его роли выступают алюмосиликаты — смесь Al_2O_3 и SiO_2) с целью повысить октановое число.

В результате образуются разветвленные и ароматические углеводороды, что позволяет повысить качество топлива.

Гидрокрекинг

Гидрокрекинг – это процесс превращения парообразной нефти в бензин и реактивное топливо под действием водорода при высоком давлении, повышенной температуре и наличии катализатора (на основе вольфрама, никеля или платины).

«Гидроочистка» - гидрирование дистиллятов при невысоких требованиях к выходам продукции, главным образом для удаления серы из сырья.

Другие процессы переработки нефти

Остальные процессы используются для производства и повышения октанового числа бензина.

К ним относятся:

- ✓ полимеризация,
- ✓ алкилирование,
- ✓ изомеризация.

Полимеризация.


Полимеризация этилена (или пропилена) и бутилена дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82:

Производство и транспортировка

Завод по переработке нефти.

Ректификационная колонна

Нефть, как и газ, транспортируют по трубопроводу:

Трубопровод к одному из заводов

Газотрубопровод. Тюменская область.

Продукты нефтепереработки

Дорожное покрытие

Резина, краски, лаки, растворители

Топливо, смазки, масла

Взрывчатые вещества

Нефть

Косметика, моющие средства

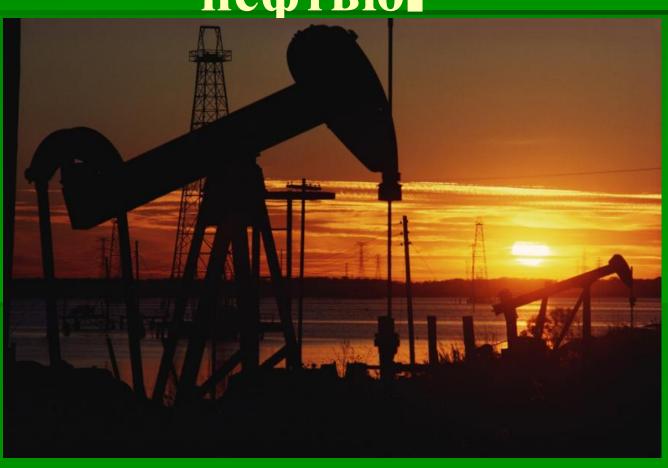
Лекарства

Ядохимикаты

Продукты питания Основная масса нефти (больше 85%) расходуется в виде топлива и только около 15% идет на химическую переработку.

Поэтому в XXI веке перед химиками стоит задача расширить применение нефти как источника химического сырья, а не топлива.

Замена там, где это возможно, горючего из нефти на газ и уголь – один из способов разумного использования драгоценной жидкости.



Многообразие нефтепродуктов

Фракции попутного нефтяного газа:

- 1. Сухой газ метан, этан (применяют как топливо);
- 2. Пропан-бутановая смесь (применяют как топливо);
- 3. Газовый бензин пентан и выше (применяют как добавка к бензину).

Охрана окружающей среды. Последствия загрязнения нефтью.

Загрязнение воды

