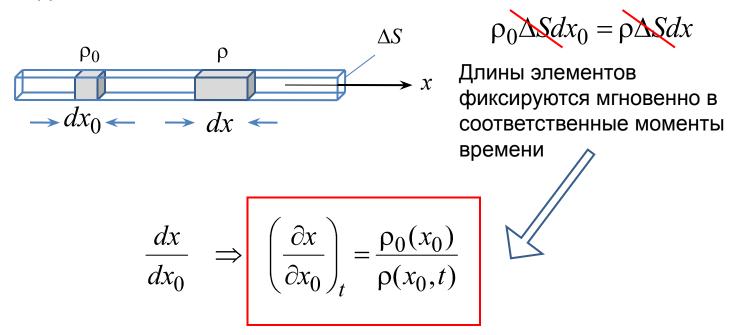
Решение задачи 3 (задача 7.3, Векштей)

Условия задачи

- 7-3. В однородной среде с плотностью ρ_0 и равным нулю давлением (пыль) в некоторый момент времени создается неоднородное в пространстве поле скорости $v(x) = v_0 \sin \pi x/l$. Найти возникающее в результате движения распределение плотности пыли $\rho(x, t)$.
 - Среда идеальная нет диссипации энергии
 - Частицы пыли не взаимодействуют между собой: «парциальное» давление пыли отсутствует
 - Основания для использования лагранжева подхода
 - нужно отслеживать отдельные частицы пыли, что лежит в основе подхода Лагранжа
 - лагранжевы уравнения движения частиц жидкости (пыли) линейны в отличие от уравнения Эйлера

2) Уравнение непрерывности по Лагранжу

Уравнение непрерывности выражает закон сохранения вещества Рассмотрим сохранение вещества для выделенного элемента жидкости



3) Уравнение движения по Лагранжу

Выделенный элемент dx испытывает ускорение $dm \frac{d^2x}{dt^2} \Rightarrow dm \left(\frac{\partial^2x}{\partial t^2}\right)_{x_0}$

Находится под действием разности сил давления p(x) и p(x+dx)

$$p(x + dx) = p(x) + \left(\frac{\partial p}{\partial x}\right) dx + \mathbb{I} \longrightarrow \Delta S[p(x) - p(x + dx)] = -\Delta S\left(\frac{\partial p}{\partial x}\right)_t dx$$

$$p(x) \longrightarrow (x + dx)$$

$$x \longrightarrow (x + dx)$$

С учетом действия еще и массовой силы $dm \cdot f(x, t)$ по 2-му закону Ньютона имеем, соотнося элементу значение координаты

$$dm \left(\frac{\partial^2 x}{\partial t^2} \right)_{x_0} = - \left(\frac{\partial p}{\partial x_0} \right)_t dx_0 \Delta S + dm f(x_0, t)$$
 Так как $dm = \rho \Delta S dx$, получаем

$$\left(\frac{\partial^2 x}{\partial t^2}\right)_{x_0} = -\left(\frac{\partial p}{\partial x_0}\right)_t \frac{dx_0 \Delta S}{\rho \Delta S dx} + f(x_0, t)$$

Из закона сохранения вещества $\rho dx = \rho_0 dx_0$

Поэтому
$$\left(\frac{\partial^2 x}{\partial t^2}\right)_{x_0} = -\left(\frac{\partial p}{\partial x_0}\right)_t \frac{1}{\rho_0} + f(x_0, t)$$

4) **Решение задачи** По условиям задачи $\left(\frac{\partial p}{\partial x_0}\right)_t = 0$ $f(x_0,t) = 0$ Уравнение движения $\left(\frac{\partial^2 x}{\partial t^2}\right)_t = 0$ \Rightarrow $x = x_0 + v(x_0)t$

Величину начального распределения скорости $\mathrm{v}(x_0)$ Найдем из заданного поля скоростей $v(x) = v_0 \sin\left(\frac{\pi x}{I}\right)$ заменой $x \rightarrow x_0$

$$\mathbf{v}(x_0) = \mathbf{v}_0 \sin\left(\frac{\pi x_0}{l}\right)$$
 Отсюда имеем связь лагранжевой координаты x с ее начальным значением x_0

$$x = x_0 + v_0 t \sin\left(\frac{\pi x_0}{l}\right) \tag{1}$$

Цель решения – нахождение распределения плотности частиц $\rho(x_0,t)$ Эта величина входит в закон сохранения вещества:

$$\left(\frac{\partial x}{\partial x_0}\right)_t = \frac{\rho_0(x_0)}{\rho(x_0, t)} \qquad \Longrightarrow \qquad \left|\begin{array}{c} \rho(x_0, t) = \frac{\rho_0(x_0)}{\left(\frac{\partial x}{\partial x_0}\right)_t} \\ \end{array}\right| \qquad (2)$$

Из (1) дифференциированием получаем

$$\left(\frac{\partial x}{\partial x_0}\right)_t = 1 + v_0 t \frac{\pi}{l} \cos\left(\frac{\pi x_0}{l}\right) \implies \rho(x_0, t) = \frac{\rho_0(x_0)}{1 + \frac{\pi}{l} v_0 t \cdot \cos\left(\frac{\pi x_0}{l}\right)}$$

Обозначая исходное распределение плотности $\rho_0(x_0) \to \rho_0$ имеем окончательно

$$\rho(x_0, t) = \frac{\rho_0}{1 + \frac{\pi}{l} v_0 t \cdot \cos\left(\frac{\pi x_0}{l}\right)}$$

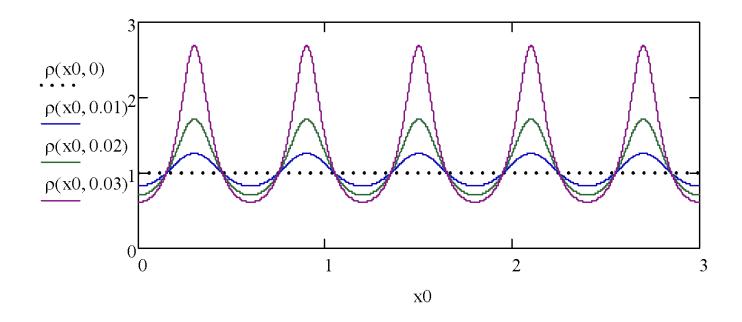
5) Обсуждение и выводы

- Вместо $\rho(x_0,t)$ можно рассмотреть используя (1) $\rho(x,t)$ Однако в этом случае вследствие зависимости x от t не удается установить распределения плотности в фиксированные моменты времени
- Формула показывает изменения распределения плотности частиц по координате начальных положений со временем, в частности предсказывает возникновение сингулярных особенностей при

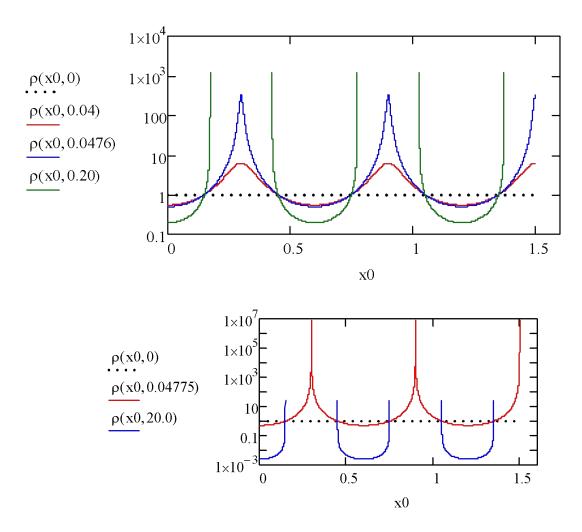
$$1 + \frac{\pi}{l} \mathbf{v}_0 t \cdot \cos \left(\frac{\pi x_0}{l} \right) = 0$$

• Сингулярности плотности (с разрывом и появлением нефизических решений ρ <0) возникают в разные моменты времени в разных точках. Первый разрыв имеет место в точке $x_0 = l$ в момент времени

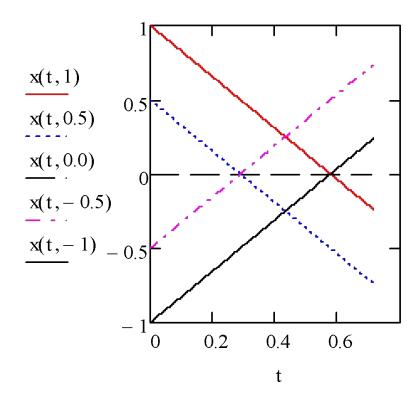
$$t^* = l/(\pi v_0)$$



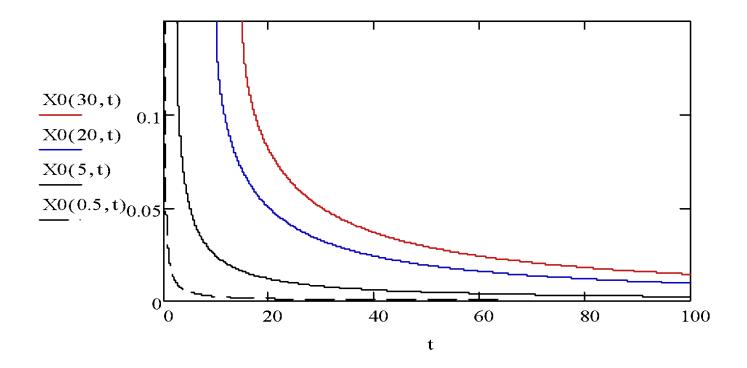
Распределение плотности в начальные моменты



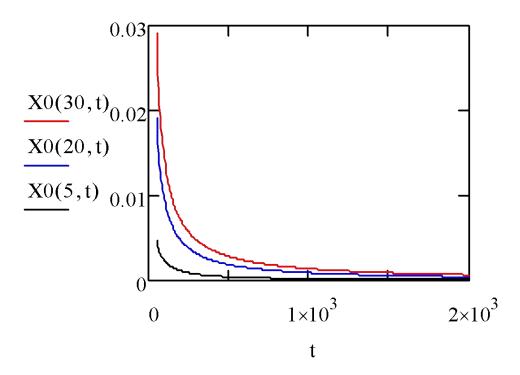
Типичные картины сингулярностей плотности



Пересечения лагранжевых траекторий частиц в разных точках, в разное время



Изменение местоположения $x_o(x,t)$ частиц с разными лагранжевыми координатами x со временем. Явная демонстрация эффекта группирования.



Продолжение предыдущего рисунка

Основной вывод: жидкость (газ) представляют собой существенно нелинейную систему; сингулярности – следствие идеализации (необходим учет вязкости и диссипации энергии)