Слайд-лекция №30

Средства влияющие на свертывающую систему крови

Механизмы коагуляции крови

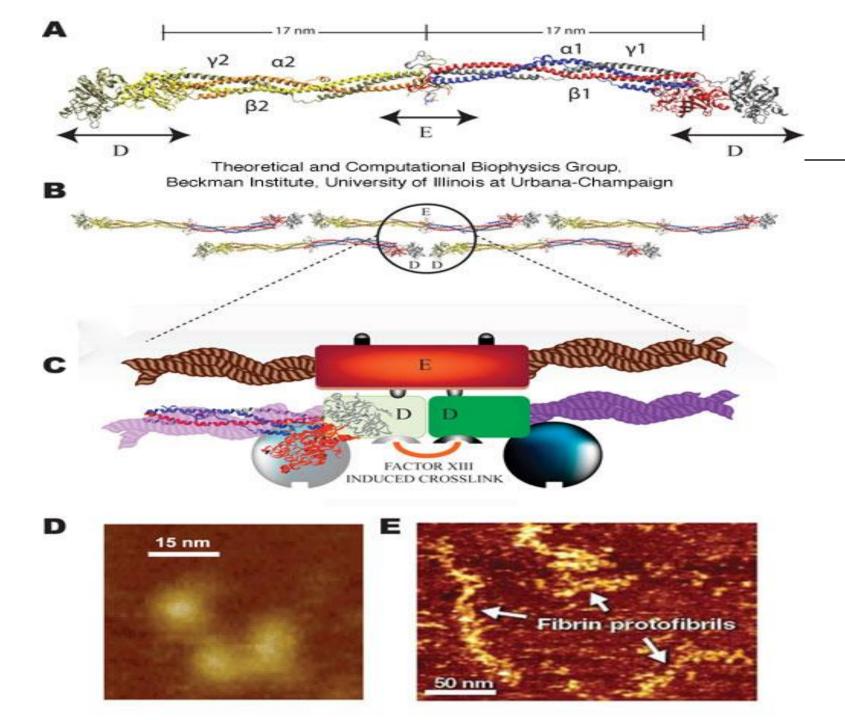
о Тромбогенез.

 Тромбоциты занимают центральное место во всех тромбоэмболических заболеваниях.

Белый тромб

Первоначально развивается в артериях, где красные кровяные пластинки приклеиваются к сосудистой стенке. Процесс склейки сопровождается выделением АДФ - мощного индуктора агрегации тромбоцитов. Растущий тромб снижает кровоток. Локальное сужение сосуда запускает процесс образования фибрина и вокруг белого тромба возникает красный.

Красные тромбы


Развиваются в венах, где давление ниже чем в артериях. Этот процесс чаще всего протекает в клапанном аппарате венозной системы. На первичных тромбах образуются вторичные, которые состоят из нитей фибрина, в которые вплетены эритроциты. Такие тромбы могут отрываться и уноситься с кровотоком в различные места организма, приводя к возникновению эмболий.

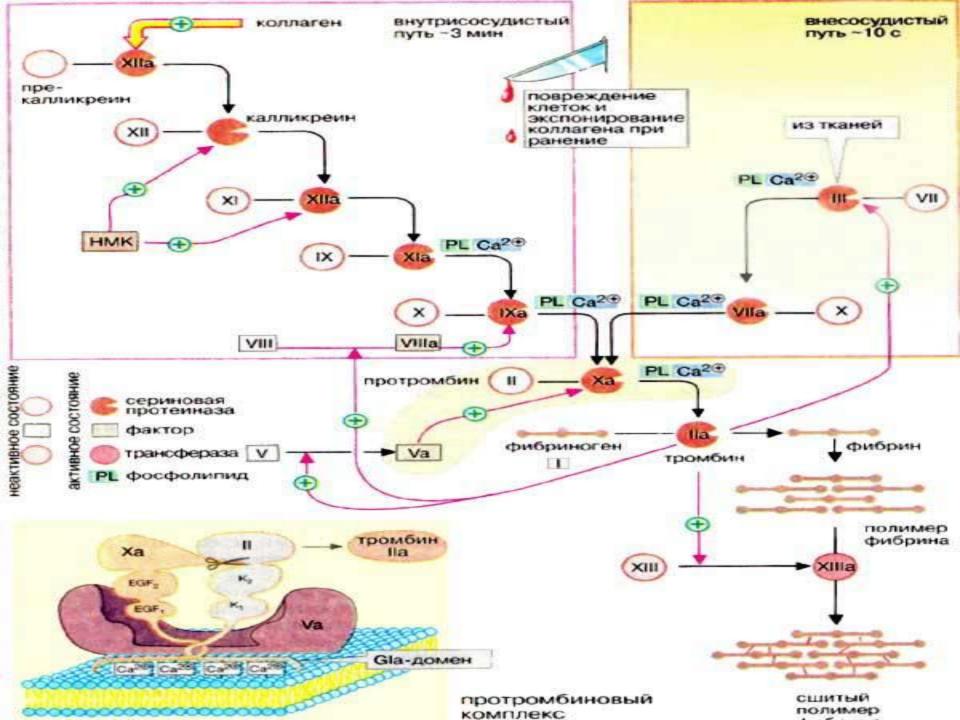
Гемостаз

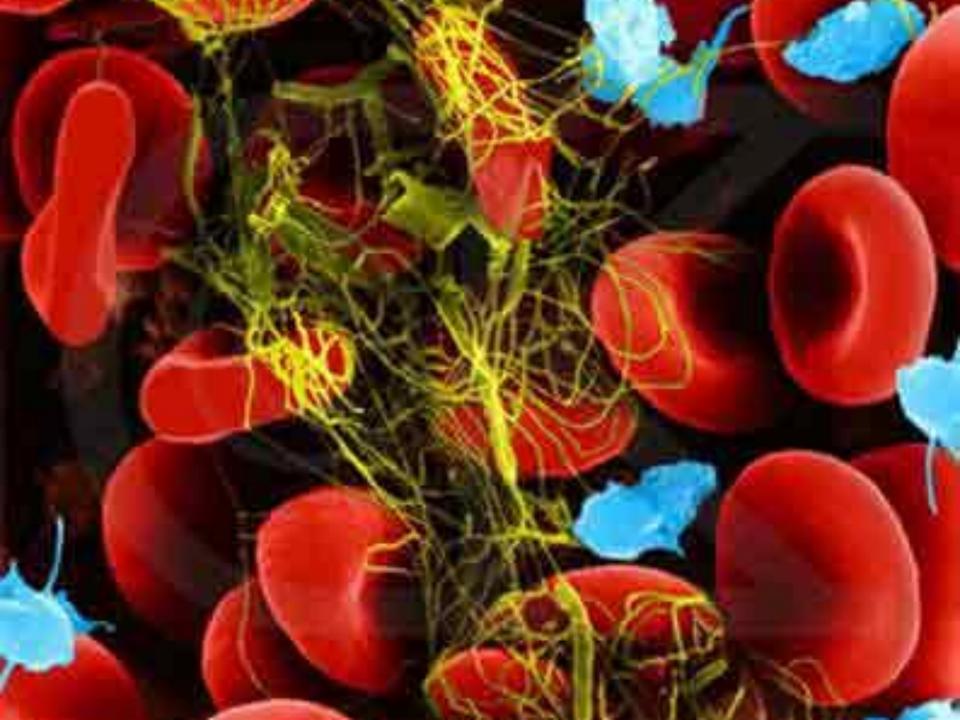
- Гемостаз это процесс спонтанного прекращения кровотечения из места повреждения. Первичный гемостаз всегда сопряжен с вазоконстрикцией(1-я фаза).
- В течение 2-й фазы гемостаза тромбоциты склеиваются с коллагеном кровеносных сосудов (адгезия тромбоцитов). Затем мембраны тромбоцитов растворяются и они формируют единую желотинообразную массу, которая способствует прекращению кровотечения, однако, для того, чтобы укрепить образовавшийся тромб, он болжен быть насыщент фибриновыми нитями.

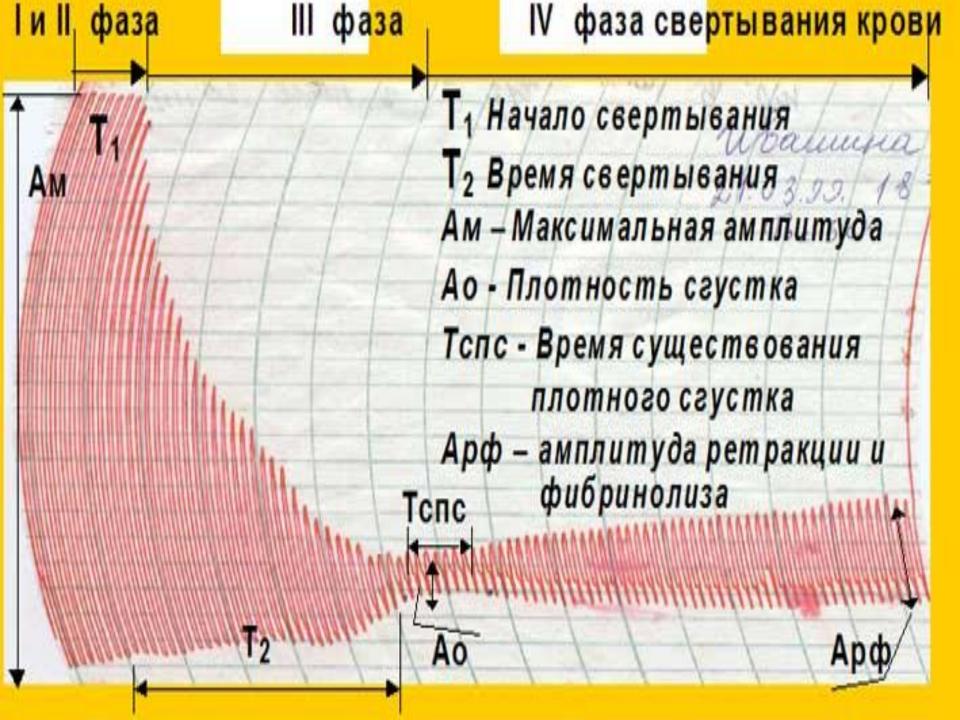
Фибриновые нити

Процесс образования фибриновых нитей запускается при местном раздражении сосудов и является составной частью процесса коагуляции. Наряду с этим стимулируется выработка тромбина, способствующего выделению АДФ из тромбоцитов а также усиливается синтез простагландинов из арахидонойовй кислоты, содержащейся в мембранах тромбоцитов.

Тромбоксан А2


 Тромбоксан А2 синтезируется внутри тромбоцитов и индуцирует тромбогенез.


Простациклин


 Простациклин синтезируется внутри сосудистой стенки ее эндотелием и угнетает тромбогенез.

Коагуляция

Коагуляцией крови называется превращение растворимого фибриногена в нерастворимый фибрин. Известно более пятнадцати белков, присутствующий в кровотоке, которые учавствую.т в сложном каскаде протеолитических реакций.

акторы свертывания и их синонимы

- о I о Фибриноген
- Iⁿ
 Фибрин мономер
- □ О Фибрин полимер
- Ⅱ[^] Протромбин
- о III о Тканевой тромбопластин
- о IV _о Кальций
- о V о Роакселерин
- о VII о Проконвертин
- VIII _○ Антигемофильный глобулин
- IX о Кристмас фактор; компонент тромбопластина плазмы
- X
 Фактор Стюарта-Прувера
- XI о Предшественник плазматического тромбопластина

Факторы свертывания и их синонимы

o XII Фактор Хагемана

XIII Фибрин-стабилизирующий фактор

HMW-K Кининоген с высоким молекулярным весом

Прекалликреин, фактор Флетчера

Ка Калликреин

Pre-K

PL

Тромбоцитарный фосфолипид

На каждои этапе фактор профермент сгустка (т.е. фактор XII) подвергается ограниченному протеолизу и становится активной протеазой (т.е. фактором XIIa). Эта протеаза активирует следующий фактор формирования сгустка (фактор XI), до тех пор пока окончательно не свормируется плотный фибриновый сгусток.

Фибриноген

Фибриноген (фактор I) - растворимый предшественник фибрина, является субстратом фермента тромбина (фактор IIa). Эта протеаза формируется в течение коагуляции посредством активации их профермента тротромбина (фактор II).

Протромбин

 Протромбин связывается с помощью кальция с фосфолипидной (PL) поверхностью тромбоцитов, где фактор X(Xa) в присутствии фактора V превращает его в тромбин крови.

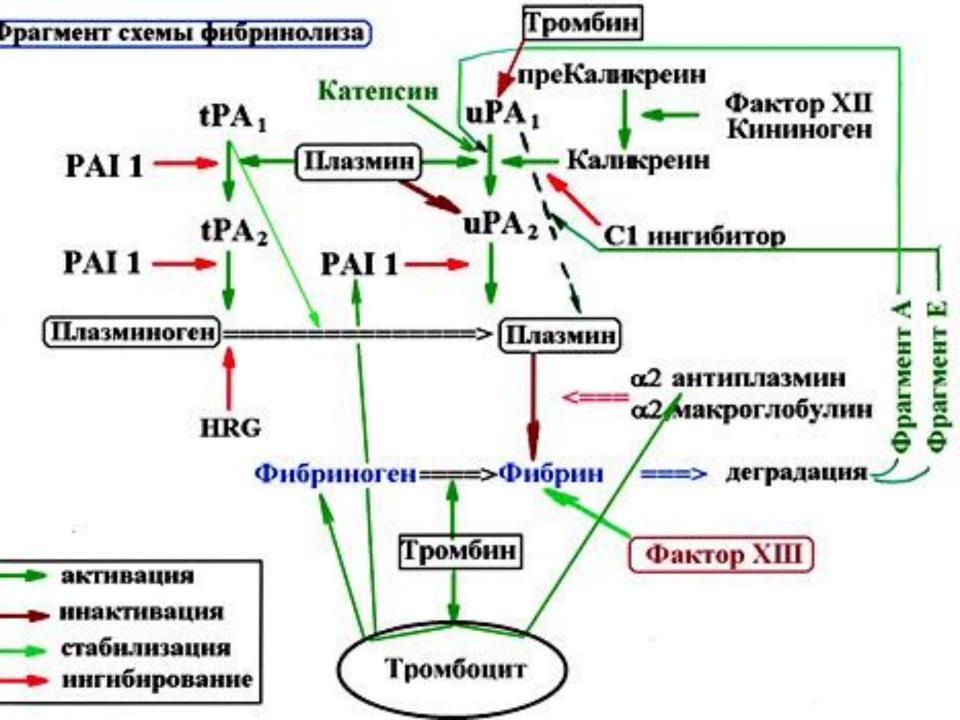
Фактор Х

- Фактор X активируется двумя различными путями.
- Внутренняя система обладает всеми факторами необходимыми для коагуляции, содержащиеся в циркулирующей крови.
- Внешняя ситема включает в себя неидентифицированный липопроеин называемый тканевым тромбопластином (фактр III), который высвобождается из поврежденной ткани в кровоток. Тканевой тромбопластин в присутствиии фактора активации VII (VIIa) превращается в фактор X, связывающийся с помощью кальция с поверхностью фосфолипида, в активный фактор X (Xa). Во внешней системе фактор Xa образуется в течение нескольких секунд, поскольку более ранние реакции, занимающие много времени уже завершились.

Регуляция коагуляции и фибринолиза

- Коагуляцию крови и формирование тромба должно быть ограничено минимально возможной областью для достижения локального гемостаза в ответ на кровотечение из травматического повреждения или зоны хирургического вмешательства. Эти процессы регулируются и ограничиваются двумя основными системами:
 - угнетение фибрина
 - фибринолиз.

- Плазма содержит ряд ингибиторов протеаз, которые быстро инактивируют белки коагуляции, когда они покидают район поврежденного сосуда. Наиболее важные белки этой системы:
 - альфа1-антитрипсин
 - альфа2-макроглобулин
 - альфа2-антиплазмин
 - антитромбин III


Когда эта система подавлена, может начаться общее внутрисосудистое свертывание крови. Этот процесс называют диссеминированной внутрисосудистой коагуляцией (ДВК) и он может начаться после массивного повреждения тканей, клеток злокачественных опухолей, лизиса акушерско-гинекологических некоторых манипуляций или бактериального сепсиса.

Фибринолиз.

- Центральное место в этом процессе занимает превращение неактивного плазминогена в протеолитический фермент плазмин. Этот процесс активируется в самом начале свертывания крови фактором XIIa.
 - Поврежденные клетки выысвобождают активаторы плазминогена. Плазмин изменяет форму тромбов и ограничивает распространение тромбоза протеолитическим растворением фибрина. Возможность регуляции фибринолитической системы очень важна при проведении лечения. Повышение фибринолиза эффективно препятствует развитию тромбоза.

Активаторами фибринолитической системы являются:

- урокиназа
- стрептокиназа
- тканевые факторы плазминогена.

- В свою очередь, обратный процесс понижение фибринолиза, защищает образовавшиеся сгустки от лизиса и снижает кровотечение при дефицитах процессов гемостаза.
- В клинической практике в настоящее время используют ингибитор фибринолиза аминокапроновую кислоту. Гепарин и пероральные антикоагуллянты не влияют на механизм фибринолиза.

Классификация

Антикоагуляенты прямого действия:

- о гепарин
- о гепариноид

Ы

Классификация

Антикоагулянты непрямого действия:

- неодикумарин,
- фепромарон
- синкумар
- фенилин

Гепарин

- Гепарин представляет собой смесь кислых мукополисахаридов, вырабатываемых в органа тучными клетками.
 - Его биологическая активность зависит ингибитора плазматических протеаз антитромбина III, который является кофактором гепарина. Антитромбин ингибитует свертывающий фактор протеаз, образуя с ними эквимоляные стабильные комплексы. В отсутствие гепараина эта реакция протекает очень медленно, сам же гепарин усиливает ее тысячекратно. Высокоактивные молекулы тысячекратно. Высокоактивные молеку гепарина связываются с антитромбином вызывают конформационные изменения этого ингибитора. Эти конформационные изменения способствуют его активного ц антитромбина спос взаимодействию его лучшему центра протеазами. Гепарин катализирует антитромбинпротеазнуюреакцию, сам при этом не расходуясь. Как только антитромбин-протебазный комплекс сформирован, гепарин отщепляется него вступает в новую OT реакцию.

Механизм действия

- Противосвертывающее действие гепарина проявляется путем торможения торможения I, II и III фаз свертывания крови.
- Основным эффектом гепарина является выраженный антитромбиновый эффект и в норме он обеспечивает до 70% антитромбиновой функции крови.
- Гепарин способствует также адсорбции тромбина на фибрине и превращению тромбина в неактивный метатромбин.
- Антитромбопластиновое действие гепарина связано с торможением активности II, VII, IX, X, XI, XII факторов свертывания крови, тем самым нарушается образование активного тромбопластина.
- Гепарин препятствует переходу фибриногена в фибрин, вызывает быстрое склеинвание тромбоцитов с последующей тромбоцитопенией.
- Эстеро-сульфатные группы придают молекуле гепарина сильный отрицательный заряд, который создает электрически отрицательный заряд в сосудистой стенке и препятствует внутрисосудистому тромбообразованию.

Фармакодинамика

- о Антикоагулянтное действие
- Антиатеросклеротическое действие. Препарат повышает активность липопропионовой липазы фермента, функция которого заключается в выведении хиломикпронов из плазмы крови, и обуславливает феномен "прсветления плазмы" у больных атеросклерозом. Кроме того, гепарин снижает уровень холестерина и бета-липопротеидов в сыворотке крови, особенно при V типе гиперлипидемии.
- Липолитическое действие, выражающееся в растворении холестериновых камней в желчном пузыре.

- Противовоспалительное, проивоаллергическое и иммуносупрессивное действие обусловлено его антагонизмом к серотонину, гистамину, снижением активности гиалуронидазы, способностью препарата тормозить реакцию взаимодействия антиген-антитело, уменьшать активность комплемента, подавлять кооперативное взаимодействие Т и В лимфОЦИТОВ.
- Антидистрофическое и антигипоксическое действие реализуется за счет повышения процессов окислительного фосфорилирования и улучшения тем самым метаболизма внутри сосудистой стенки, костном мозге и др. тканях.
- Потенциирует сахараснижающие эффекты инсулина и др. противодиабетических средств.
- Диуретическое и калий-сберегающее действие
- Снижает сосудистый тонус и расширяет резистивные сосуда, что приводит к снижению артериальной гипертензии, особенно при склеротической гипертонии.

Фармакокинетика.

 Концентрация гепарина, превышающая уровень 0.2 Ед\мл, обычно препытствуют развитию легочной эмболии у больных с установленным диагнозом венозного тромбоза

Дозирование.

Гепарин плохо всасывается при приеме внутрь или под язык. При попадании в общий кровоток гепарин практически не связывается с альбуминами. Период полувыведения колеблеца от 50 минут при назначении низких доз гепарина (2500 - 5000 Ед), до 150 минут при высоких дощзах (свыше 30000 Ед). При внутривенном угнетение свертываемости наступает введении практически сразу и продолжается 4-6 часов. При внутримышечном введении эффект наступает через 15-20 мин и продолжается 6 часов. При подкожном введении действие наступает через 60 мин и продолжается 8-12 часов.

Побочные эффекты.

- Основное осложненеи прни введении гепарина кровотечения.
- Отеопороз при длительном примениии
- гипохолестеринемическое действие
- Обратимая тромбоцитопения
- Заболевания связанные с геморрагическими осложнениями:
 - язвенная болезнь желудка;
 - злокачественные опухоли
 - активный туберкулез
- лекарственная аллергия

НЕПРЯМЫЕ АНТИКОАГУЛЯНТЫ

Производные оксикумарина:

- дикумарин
- неодикумарин
- синкумар
- фепромарон
- нитрофарин
- варфарин

НЕПРЯМЫЕ АНТИКОАГУЛЯНТЫ

п Производныефенилиндандиона:

- фенилин
- омефин

НЕПРЯМЫЕ АНТИКОАГУЛЯНТЫ

- По способности куммулировать:
 - n 1. Быстро метаболизирующиеся
 - неодикумарин
 - синкумар
 - фенилин
 - n 2. Медленно метаболизирующие
 - фепромарон
 - дикумарин
 - варфарин
 - маркумар.

НЕПРЯМЫЕ АНТИКОАГУЛЯНТЫ

По продолжительности действия

- n . Препараты короткого действия:
- неодикумарин (пелентан)
- фенилин
- синкумар
- п. Препараты средней продолжительности действия
- омефин
- n . Препараты длительного действия
- маркумар
- варфарин
- фепромарон
- дикумарин

Механизм действия

- Кумариновые антикоагуляеты блокируют гаммакарбоксилирование ряда глютаминовых остатков протромбина и факторов VII, IX, X. Блокада этого процесса приводик к формированию неполноценных молекул, которые биологически неактивны при коагуляции. Карбоксилирование белков физиологически сопряжено с окислительной инактивацией витамина К. Антикоагулирующий эффект возникает в результате сохраняющегося равновесия между частичным угнетением синтеза и постоянным распадом 4-х витамин-Кзависимых факторов свертывания (II, VII, IX, X). Гиполтромбинемическиеский эффект зависит от скорости их дегенерации в системе кровообращения. Периоды полувыведения этих факторов следующие: для факторов VII, IX, X, II по возрастанию - 6, 24, 40 и 60 часов, соответственно.
- Между достижением максимальных концентраций непрямых антикоагулянтов в плазме крови и развитием их максимального гипопротромбинемического эффекта обычно проходит от 1 до 3 дней. Различия в действии различных непрямых антикоагулянтов заключаются в основном в различной длительности их периодов полувыведения.

Фармакодинамика.

- Кроме антикоагулянтного действия антикоагулянты непрямого типа могут:
 - расслаблять гладкую мускулатуру сосудов;
 - оказывать желчегонный эффект;
 - снижать активность ферментов поджелудочной железы;
 - тормозят процессы окислительного фосфорилирования; (повышают содержание трансаминаз);
 - снижают иммунореактивность организма;
 - снижают резистентность капилляров;
 - уменьшают агрегацию тромбоцитов;
 - проявляют анальгетическое и седативное действия.

Фармакокинетика.

Кумариновые антикоагулянты хорошо и почти полностью всасываются в ЖКТ. Терапевтический эффект начинает проявляться через 2-3 часа и достигает максимальных значений через 12-30 часов после приема. Выделяются в основном с мочей. Длительность действия препаратов составляет от 2 до 10 суток.

Побочные эффекты.

- 1.Кумариновые антикоагулянты проникают через плацентарный барьер, поэтому не применяются у беременных.
- o 2.Геморрагические эффекты.
- 3.По частоте возникновения располагаются в следующем порядке:
 - гематурия
 - ингиворагии
 - петехии
 - гематомы от небольших травм
 - мелена
 - метрорагии
 - гемартрозы
 - энцефалорагии
 - апоплексия надпочечников
- 4.Внезапная отмена антикоагулянта, особенно с относительно низкой кумуляцией и быстрым выведением может привести к рикошетному тромбозу.
- 5.Аллергические реакции.
- 6.Диффузное облысение

ФИБРИНОЛИТИКИ

 Тромболитики, или фибринолитики лекарственные средства разрушающие тромбы.

Классификация

- 1. Фибринолитики с прямым механизмом действия (которые действуют как in vivo, так и in vitro.
- о а) Протеазы (фибринолизин, трипсин, химотрипсин).
- об) Лекарственные средства, активирующие процесс превращения плазминогена в плазмин (стрептокиназа, стрептодеказа, урокиназа).
- 2 Фибринолитикки с непрямым механизмом действия, которые действиуют только in vivo (никотновая кислота, компламин). Механизм их действия связан с воздействием на сосудистую стенку или ткани, что способствует опосредованному выделению активатора плазминогена..

ингибиторы фибринолиза

1) лекарственные вещества, тормозящие активацию профибринолиза

аминокапроновая кислота, амбен

2) лекарственные средства, тормозящие активность протеаз:

трасилол контрикал гордокс

Механизм фибринолиза

Механизм активации фибринолиза в организме представть следующим образом: при формировании фибриновых отложений на стенке сосуда в эндотелия поступает сигнал, вызывающий высвобождение тканевого активатора плазминогена. Образуется комплекс фибрин - тканевой активатор плазминогена. Плазминоген, циркулирующий в крови фиксируется на образовавшемся комплексе. В результате разрыва пептьидного образуется активни плазмин, растворяющий пептьидной тромба. Избыток активного плазмина инактивируется в кровеносном русле 2-антиплазмином, а избыток активатора плазминогена - печенью. Однако, активный плазмин лишен избирательности и может разрушать не только молекулы фибрина, но и молекулы фибриногена и др. факторов свертывания крови. Таким образом, плазмин наряду с разрушеним тромба способен вызвать распад белков, участвующих в физиологической реакции свертывания крови и вызвать кровотечение.

Альтернативы фибринолиза

- Цель тромболитическолй терапии заключается востановлении кровотока по тромбированному руслу. Фибринолитические средства вызывают генерализованный лизис при внутривенном введении, поэтому они обеспечивают не только защиту от развития аозможного гемостаза, но и растворяют уже имеющиеся тромбы. С другой стороны, при этом также повышается риск развития кровотечений. Для устранения возможных побочных эффектов существует два современных подхода:
 - внутриартериальное (внутрикоронарное) введение;
 - использование тканевых активаторов плазминогена (т.е. без воздействия на системный фибринолиз или разрушение фибриногена.

Фибринолизин

получают из III Фибринолизин фракции плацентарной сыворотки крови, которую после нее гамма-глобулина извлечения И3 обрабатывают небольшими дозами трипсина. Фибринолизин по своей структуре является глобулином, его молекулярный вес колеблеца от 12000 7500 дальтон. Молекула ДО фибринолизина состоит из двух аминокислотных цепочек.

Фармакодинамика.

В общепринятых дозах (40000 - 20000 ЕД) фибринолизин оказывает наружный лизис тромба в первые часы после его образования. Расчеты показывают, что для создания избытка фибринолизина необходимы дозы, в 1.5 раз превышающие общепринятые суточные. Назначение фибринолизина в таких дозах не применяется, так как приводит к резкому увеличению частоты геморрагических побочных эффектов.

Побочные эффекты.

- Геморрагические эффекты связаны в основном с его совместным введением с гепарином и устраняются введением протамин-сульфата. Изредка приходится добавлять 100 200 мг 5% раствора аминокапроновой кислоты, а в особо тяжелых случаях свежеконсервированной крови.
- Кроме того могут быть:
 - боли за грудиной
 - гиперемия лица
 - падение АД
 - повышение температуры до 40 градусо С (пирогенная реакция)
 - флебиты

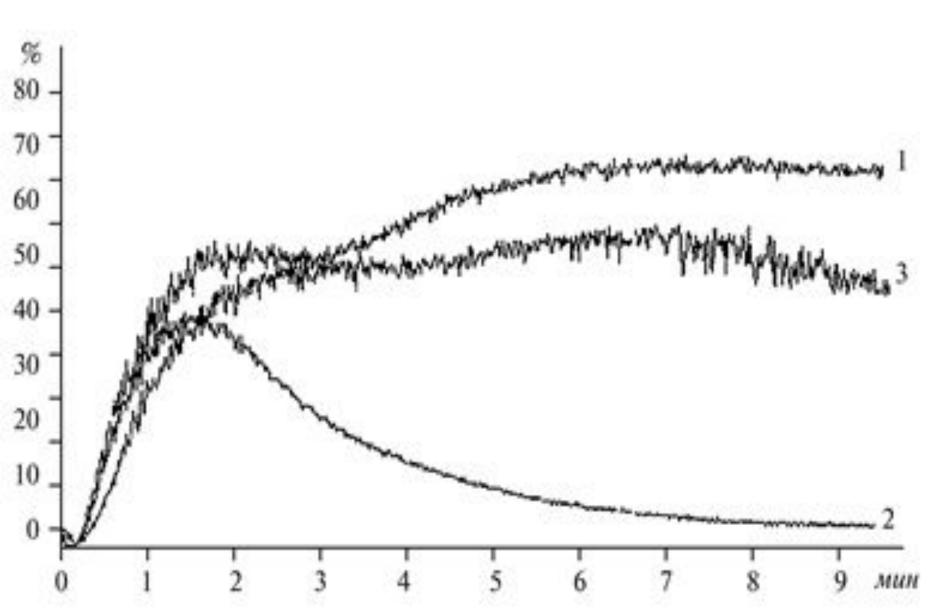
Стрептокиназа

Стрептокиназа является белком, синтезируемым стрептококками. Этот ферментный комплекс катализирует процес превращения плазминогена в активный плазмин.

Фибриногенолитический эффект стрептокиназы наблюдается в течение 36 часов после введения и способствует снижению вязкости крови. Длитьельное введение стрептокиназы вызывает разрушение микротромбов и развитие кровоточивости.

Стрептодеказа.

- Фибринолитический препарат пролонгированного действия. Препарат мобилизирован на водорастворимой матрице, которая защищает стрептазу от естественных ингибиторов.
- Приоднократном внутривенном введении высокая фибринолитическая яктивность и эффективная терапевтическая концентрация сохраняются в течение 48-72 часов. Постепенное высвобождение фермента позволяет сочетать его с гепараином или фибринолотиком другой группы.


Урокиназа

- Урокиназа фермент, синтезируемый в почках человека, непосредственно превращает плазминоген в активный плазмин.
- Урокиназа препарат физиологического активатора фибринолиза. В организме урокиназа вырабатывается в эпителии почечных канальцев. В отличие от стрептокиназы урокиназа является прямым активатором плазминогена и не обладает антигенными свойствами, не вызывает сенсибилизации. При ее применении нет необходимости определять индивидуальную чувствительность к препарату, урокиназа может быть назначена повторными курсами. Действие урокиназы направлено главным образом на лизис фибрина.

Побочные эффекты.

- При успешном тромболизисе, как правило развивается резорбтивная лихорадка, связанная с посткплением в кровоток продуктов распада тромбов. Помимо пирогенной реакции возможны:
- о аллергические реакции;
- о кровоизлияния
- о спонтанные кровотечения и т.д.

Агрегация тромбоцитов

Антиагреганты

- 1. Ингибиторы арахидонового метаболизма тромбоцитов:
 - а) ингибиторы циклооксигеназы НПВС:
 - ацетилсалициловая к-та
 - бутадион
 - индометацин
 - напроксен
 - бруфен
- б) ингибиторы фосфолипазы:
 - гидрокортизон
 - метиприд,
 - папаверин
 - акрихин
- в) селективные ингибиторы тромбоксансинтетазы:
 - имидазол
 - левамизол

Антиагреганты

- 2. Средства повышающие концентрацию цАМФ:
- а) активаторы аденилатциклазы:
 - простоциклин (ПГ I2), ПГ D2, ПГЕ2.
- б) ингибиторы фосфодиестеразы:
 - дипиридамол,
 - курантил
 - 3. Ингибиторы синтеза и активности тромбина: поизводные кумаринового ряда

Антиагреганты

п 4. Препараты с недостаточно изученным механизмом антиагрегационного действия:

- а) стимуляторы синтеза простациклина:
 - трентал,
 - производные никотиновой кислоты.
- б) антагонисты кальция:
 - нифедипин,
 - дилтиазем
- в) ингибиторы высвобождения тромбоцитарных компонентов%
 - пирацетам
- г) антибиотики пенициллинового ряда
- д) антигистаминные и антисеротонинергические средства (лидофлазин)
- е) трициклические антидепрессанты:
 - имипрамин
 - амитриптилин
- ж) нитропруссид натрия

Механизмы действия

 Функции тромбоцитов регулируются тремя видами веществ.

Первая группа:

- катехоламины
- коллаген
- тромбин
- простациклиин (синтезируются в других органах организма)

Механизмы действия

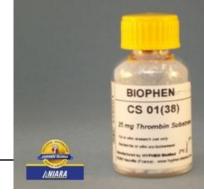
о Вторая группа

- АДФ
- простагландины D, E
- серотонин (синтезируются внутри самих тромбоцитов)

Механизмы действия

Третья группа

- эндопероксиды простагландинов
- Тромбоксан А2
- цАМФ, цГМФ
- ионы кальция (синтезируются внутри тромбоцитов и действуют там же).


Ацетилсалициловая кислота

- О 1) Необратимо ингибирует активность циклооксигеназы тромбоцитов и тем самым тормозит агрегацию и склеивание тромбоцитов (нарушается процесс выделения эндогенной АДФ, которая в условиях патологии являетсЯ катализатором процесса агрегации тромбоцитов).
 - 2) Тормозит синтез тромбоксана A2 (в условиях патологии также является катализатором адгезии тромбоцитов).
 - 3) Препятствует высвобождению ионов кальция и тромбоцитарных факторов (которые стимулируют процессы склеивания тромбоцитов).
- 4) Тормозит высвобождение серотонина и брадикинина (факторы способствующие агрегации тромбоцитов).

ПЯНТЫ

- 1) Прямые коагулянты:
 - тромбин
 - фибриноген
 - 2) Непрямые коагулянты:
 - витамин К
 - n 3) Антагонисты гепарина:
 - протамина сульфат
 - n 4) Ингибиторы фибринолиза:
 - кислота аминокапроновая
 - амбен

Прямые коагулянты Тромбин

- Тромбин является протеолитическим ферментом, который получают из донорской крови.
- Механизм связан с отщеплением боковых пептидных цепочек от фибриногена и превращение его в мономер а затем в полимер фибрин.

Фибриноген

- Также как и тромбин получают из донорской крови.
- Механизм связан с превращением в фибрин под влиянием тромбина.
 Ипосльзуют местно в виде пленок или внутривенно

Непрямые антикоагулянты Витамин К

- При дефиците витамина К развиваются геморрагические явления. Витамин К влияет на биологическую активность протромбина и факторов VII, IX и X. Витамин К обнаруживается в пищевых продуктах в двух формах К1 и К2.
- Фармакокинентика. Для всасывания К1 и К2 из ЖКТ требуются желчные кислоты. Викасол синтетический аналог витамина К водорастворим. Эффект витамина К и викасола обнаруживается в организме в течение 3-5 дней после однократного приема.
- о <mark>Побочные эффекты.</mark> При передозировках гипервитаминоз витамина К проявляется в гипертромбинемии.

Антагонисты гепарина

Протамина сульфат.
 Механизм связан с образованием комплексов с гепарином. Для нейтрализации 10000 ЕД гепарина требуется 4-5 мл 1% раствора протамина сульфата.

Ингибиторы фибринолиза Кислота аминокапроновая

- Фармакодинамика. Аминокапроновая кислота (по своей химической структуре сходна с аминокислотой лизином) является синтетическим ингибитором. Она конкурентно угнетает лизин и препятствует его взаимодействию с профибринолизином. Угнетает эффекты высвободившегося фибринолизина. Повышает адгезию тромбоцитов, а также является ингибитором кининов.
- Фармакокинетика. При приеме внутрь она быстро всасывается в ЖКТ, максимальная концентрация в плазме крови достигается через 2-3 часа. После внутривенного введения за 12 часов выводится 80%.
- Побочные эффекты. Головокружение, тошнота, ортостатическая гипотензия. После бастрого внутривенного введения: гипотензия, брадикардия, экстрасистолия.

Амбен

- Фармакодинамика. Гемостатический эффект препарата определяется тормозным влиянием на активацию плазминогена, вследствие чего угнетается образование плазмина.
- Фармакокинетика. Хорошо всасывается их ЖКТ.
 Обнаруживается в крови через 8 часов (после приема внутрь) и 4 часа (после внутривенного введения). После внутривенного введения эффект наступает быстро, но продолжается 3 часа.
 Выводится из организма почками.
- о Побочные эффекты сходны с таковыми у аминокапроновой кислоты