

Курс: Материаловедение Тема: Промышленные стали

Казачков Олег Владимирович, доцент, к.т.н. Институт лесных, инженерных и строительных наук, кафедра технологических и транспортных машин и оборудования **kaz @ psu.karelia.ru**

План лекции

- Основы легирования
- Улучшаемые и цементуемые стали
- Автоматные стали
- Рессорно-пружинные стали
- Подшипниковые стали
- Коррозионностойкие стали
- Теплоустойчивые, жаропрочные, жаростойкие стали
- Высокопрочные стали

Взаимодействие лег.элементов с углеродом

Первая группа Некарбидообразующие элементы: Al, Si, Ni, Co, Cu

Вторая группа Карбидообразующие элементы:

Fe, Mn, Cr, Mo, W, V, Nb, Zr, Ti карбидообразующая способность →

Элементы Mn, Cr, Mo, W, растворяясь в цементите, образуют легированный карбид (Fe, M)₃ C или M₃ C.

Специальные карбиды карбиды хрома $\mathrm{Cr_{23}C_6}$, $\mathrm{Cr_7C_3}$ или $\mathrm{M_{23}C_6}$, $\mathrm{M_7C_3}$ карбиды молибдена и вольфрама МоС, WC, $\mathrm{Mo_2C}$, $\mathrm{W_2C}$ или МС, $\mathrm{M_2C}$ карбиды ванадия, ниобия и титана VC, NbC, TiC или МС


Влияние лег.элементов на критические точки стали

Взаимодействие лег.элементов с железом

Взаимодействие лег.элементов с железом

Вторая группа Легирующие элементы, сужающие γ - область (повышают точку A₃ и понижают точку A₄ железа)

а) Элементы, полностью замыкающие γ - область и образующие гомогенную α - область (Al,Cr, Si, Mo, W, V)

Улучшаемые стали

- Относятся стали среднеуглеродистые (0,3...0,5% С) низко- и среднелегированные
- Свойства стали определяет высокая конструктивная прочность (надежность и долговечность)
- Термическая обработка: полная закалка + высокий отпуск (улучшение)
- Рабочая структура : сорбит отпуска

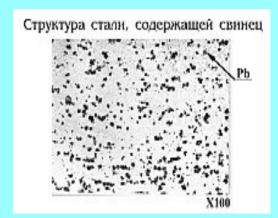
Свойства сталей после закалки и отпуска при 600°C

марка стали	σ ₀₂ ,MHa	σ _B , MHa	δ,%	ψ,%	KCU, MAx/sc
40XH	760	910	20	60	0,8
30XH3A	830	930	21	64	1,4

Цементуемые стали

- Относятся стали низкоуглеродистые (до 0,25% С) низко- и среднелегированные
- Свойства стали определяет твердый поверхностный слой и вязкая сердцевина после т.о.
- Термическая обработка: цементация (нитроцементация) + закалка + низкий отпуск

Свойства	сталей	15X,	12XH3A	н	18X2H4MA
по	сле тер	мичес	кой обра	бо	тки


марка стали	σ ₀₂ ,МПа	σ _в , мпа	8,%	ψ,%	KCU, M/Jæ/sč
15X	500	700	12	45	0,7
12XH3A 700		950	11	55	0,9
18X2H4MA	850	1150	12	50	1,0

- Данные стали отличаются хорошей обрабатываемостью резанием и предназначены для изготовления деталей на станках автоматах
- Имеют повышенное содержание S, P или легированы Pb, Ca, Se
- Маркировка: буква А, цифра С% в сотых долях
- Буквы С и Ц после А указывают на свинец и кальций

марка стязи С		овдержание С, %						
	C	Mn	S	P	Pb	G _B , MHa	8,%	
A12	0,08-0,12	0,7-1,0	0,08-0,20	0,08-0,15	0.77	420	22	
A20	0,17-0,24	0,7-1,0	0,08-0,15	<0,06	150	460	20	
Α40Γ	0,37-0,45	1,2-1,55	0,18-0,30	<0,05	17	600	14	
AC40	0,37-0,45	0,8-1,1	0,15-0,30	<0,04	0,15-0,3	580	19	

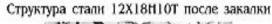
- Обладают высоким пределом упругости, пределом усталости при достаточной пластичности
- Содержат 0,5...0,7 %С и легированы кремнием, хромом, ванадием, марганцем
- Термическая обр. полная закалка + средний отпуск
- Рабочая структура после т.о. троостит отпуска

	C%	Si%	Mn%	Cr%	0	V%
50C2	0,47-0,55	1,50 - 2,00	0,6 - 0,9			87
60C2	0,57-0,65	1,50 - 2,00	0,6 - 0,9 -			
60C2XA	0,56 - 0,64	1,40 - 1,80	0,4 - 0,7 0,70		1,00	•
60С2ХФА	0,56 - 0,64	1,40 - 1,80	0,4 - 0,7	7 0,90 -	1,20	V 0,1-0,2
	Свой	ства прух	кинных	сталей		10.000
марка стали	термическая обработка		σ ₀₂ ,MHa	σ _в , мпа	δ,%	Ψ,%
65	Закалка от масло + от	840°С, пуск (480°С)	800	1100	10	35
60C2	Закалка от 870°С, масло + отнуск (460°С)		1200	1300	6	30

Подшипниковые стали

- Обладают высокой твердостью (HRC 60...65), износостойкостью и контактной выносливостью
- Содержат ≈1% С и легированы хромом
- Маркировка: буквы ШХ и цифра среднее содержание Cr в десятых долях %
- Термическая обработка неполная закалка 840…860 ^⁰C, масло + низкий отпуск 150…170 ^⁰C
- Рабочая структура: Мартенсит отпуска + Карбиды (Fe,Cr)₃C

марки стали	содержание С , %							
	c	Mn	Si	Cr				
IIIX15	0,95 - 1,05	0,20 - 0,40	0,17 - 0,37	1,30 - 1,65				
ШХІ5СГ	0,95 - 1,05	0,90 - 1,20	0,40 - 0,65	1,30 - 1,65				


• Обладают высоким сопротивлением электрохимической коррозии

Бывают хромистые 10X13, 20X13, 30X13, 40X13, 12X17, 15X25T и хромоникелевые 08X18H9T, 12X18H9T, 12X21H5T, 04X18H10

• Основной легирующий элемент – хром более 12%

марка	содержание С, %		термическая	σ ₀₂ ,	σ_{n} ,	δ,%	ψ,%	
сталн	c	Cr	Ti	обработка		MIIa	0,74	9,74
12X17	менее 0,12	16-18	-	Отжиг 760-780°С	240	390	20	50
15X25T	менее 0,15	24-27	0,15-0,40	Отжиг 740-760°C	290	440	20	45

марка еталн С	солержание, %			термическая обработка	σ ₀₂ ,	σ,	8,%	
	Cr	Ni	другие	обработка	MIIa	MIIa	0,74	
12X18H9	экспос 0,12	17 - 19	K,0 - 9,5	-	Закалка от 1050 - 1100°С	190	520	45
04X18H10	nense 0,04	17 - 19	9-11	-	Закалка от 1000-1050°С	170	500	50

v100

Структура - аустенит

Теплоустойчивые стали

- Стали эксплуатируются в нагруженном состоянии при температуре < 600 °C в течении длительного времени
- Углеродистые стали (котельные)
 12К, 15К, 20К, 22К применяют при до 450 °C
- Низколегированные стали
 12XM, 12X1MФ, 15X1МФ, 25X2М1Ф
 применяют до 580 ⁰C
- Хромистые стали (Сr 5...13%)
- 15X5, 15X11МФ, 14X12В2МФ, 40X9С2 (сильхромы) применяют до 620 0 С

- Стали способные длительное время сопротивляться деформированию и разрушению при работе при высокой температуре (>600 °C)
- Характеризуются: 1. <u>условным пределом</u> ползучести напряжением, которое вызывает за установленное время при данной температуре заданное удлинение
- 2. пределом длительной прочности напряжением, которое вызывает разрушение образца через заданный промежуток времени при постоянной температуре

Жаропрочные стали

• Основной путь повышения жаропрочности –создание в материалах крупнозернистой структуры с однородным распределением мелких упрочняющих фаз внутри зерен

Классификация жаропрочных сталей

Стали аустенитного класса применяют до 800 ^оС

С интерметаллидным упрочнением

10X11H20T3P, 10X11H23T3MP (**T.o**.3.1080...1120°C+c.700...750°C)

С карбидным упрочнением

45X14H14B2M, 40X15H7Γ7Φ2MC (**τ.ο**. 3.1050...1200°C+c.600...850°C)

• Сплавы на основе никеля (нимоники) применяют до 850 С, например, ХН77ТЮР, ХН65ВМТЮ спл. на основе никеля с лег. элементами хрома до20%, титана до2,8%, алюминия-0,55...5,5%

Жаростойкие (окалиностойкие) стали

- Стали, устойчивые к газовой коррозии
- <u>Окалиностойкость</u> достигается введением в сталь **Cr**, Al, Si

```
Марки сталей: 15X5, 15X6CЮ (600...650 °C), 40X9C2 (700...850 °C), 12X17 (900 °C),
```

15X25 (1050 °C), XH45Ю (1400 °C)-

Аустенитный спл.Fe-Ni-Cr-Al

Высокопрочные стали

стали с пределом прочности > 1500 МПа с определенным запасом вязкости разрушения КСU > 0,2 МДж/м 2 ,К $_{1c}$ =45, 75, 150 МПа*м $^{1/2}$

1. Среднеуглеродистые, комплексно – легированные низкоотпущенные стали

30XГСН2A (хромансиль), 40ХГСН3BA, 40XH2CMA

Т.о. **Закалка** + **низкий отпуск** (180...200 ⁰C)

2. Мартенситостареющие стали

03H18K3M4T, 03H16K11M3T2

Т.о. <u>закалка</u> 800..860 ^оС, воздух+<u>старение</u> 450...500 ^оС

3. Метастабильные аустенитные стали(TRiРстали)

25H25M4F, 30X9H8M4F2C2

Т.о. <u>закалка</u> 1000..1100⁰C+деформирование ε=80%при 450...600⁰C

Строительные стали; определение

- Строительные стали это конструкционные стали, применяемые для изготовления металлоконструкций и сооружений, а также железобетонной арматуры.
- Содержат не более 0,22 0,28% углерода и небольшое количество недефицитных легирующих элементов.

Примеры и маркировка по прочности

C235, C245, C255, C275, C285, C345-1, C345-2, C375-2, C345K, C390, C440, C390K, C390T, C550, C590K.

Буквенные обозначения:

- С сталь строительная
- К вариант химического состава
- Т термическое упрочнение

Цифровое обозначение.

Гарантированный предел текучести в МПа.

Цифры 1, 2 указывают гарантии по ударной вязкости при -40 и -70 °C.

Классификация по хим. составу

Строительные стали

Углеродистые

низколегированные

- Маркировка:
- Углеродистые стали Ст2сп, Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп,
- Низколегированные стали 12Г2С, 09Г2С, 15ХСНД, 10ХСНД, 14Г2АФ, 15Г2АФДпс, 12ГН2МФАЮ, 12ГН2МФБАЮ