

7 гравитационных поверхностей;

1 протонная поверхность;

2 электронных поверхности;

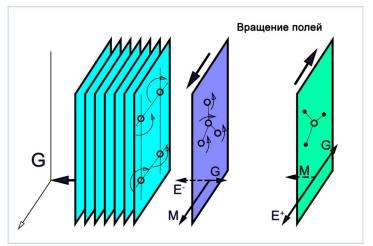
1 нейтронная поверхность;

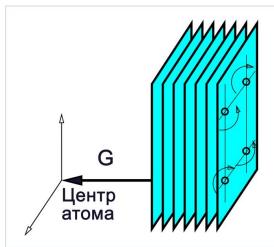
1 нейтринная поверхность.

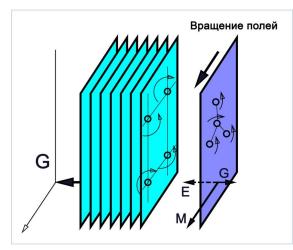
Миллиард градусов: разрыв связей на протонной, нейтронной и нейтринной поверхностях, ликвидация этих поверхностей и образование «электронного атома».

Более 10 миллиардов градусов «электронный атом» разрушается и остаётся «гравитационный атом».

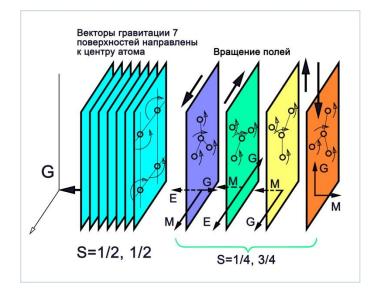
Электронная звезда: 2h, напряженность $\Gamma\Pi$ выше в 2 раза обычной = 120~G, в 2 раза выше заряд атома от обычного напряженность магнитного и гравитационного полей

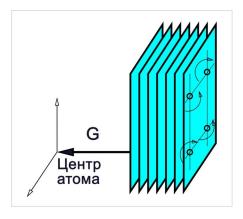

Nº	Поверхность	E	M	G
1	Протонная	hv	hv	hv
2	Электронная	hv	hv	hv
3	P_2			2hv
4	P_a			$\frac{3}{2}(hv+\frac{1}{hv})$
5	P_b			$\frac{1}{2}(hv+\frac{1}{hv})$
6	P_c			$\frac{3}{2}hv+\frac{1}{2hv}$
7	P_d			$hv + \frac{1}{hv}$
8	P_{e}			$\frac{1}{2}(hv+\frac{1}{hv})$
9	P_1			$\frac{1}{2}hv+\frac{3}{2hv})$
10	Центр атома			$\frac{1}{hv}$

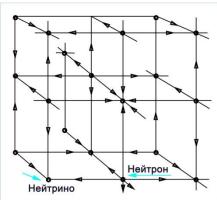

Протонная звезда: дефицит в области связки масс: относительно электронной поверхности на протонной поверхности разворот — на 90° . Дефицит разворота равен 180° . За счёт этого дефицита образуются магнитные торообразные поля вокруг «протонной» звезды.


Поверхность	G
P_2	2h
P_a	$\frac{3}{2}(h+\frac{1}{h})$
P_b	$\frac{1}{2}(h+\frac{1}{h})$
P_{c}	$\frac{3}{2}h+\frac{1}{2h}$
P_d	$h+\frac{1}{h}$
P_e	$\frac{1}{2}(h+\frac{1}{h})$
P_{i}	$\frac{1}{2}h + \frac{3}{2h}$
Центр атома	$\frac{2}{h}$

Электронная звезда: 2h, напряженность $\Gamma\Pi$ выше в 2 раза обычной = $120~\mathrm{G}$, в 2 раза выше заряд атома от обычного напряженность магнитного и гравитационного полей


Протонная звезда: дефицит в области связки масс: относительно электронной поверхности на протонной поверхности разворот — на 90° . Дефицит разворота равен 180° . За счёт этого дефицита образуются магнитные торообразные поля вокруг «протонной» звезды.





11.4 Законы для черной дыры

Чёрная дыра образуется в результате взрыва электронной поверхности атома, при этом продукты распада, «электроны», потеряв заряд и магнитное поле, попадают в центр чёрной дыры. 7 поверхностей — «фильтр».

В момент расширения протонной поверхности происходит взрыв нейтринной и нейтронной поверхностей, сопровождающийся выбросом нейтрино и нейтронов. На нейтронной поверхности атома до взрыва 184 массы (нейтронов), на нейтринной поверхности - 312 масс (нейтрино). При выбросе масс нейтронов и нейтрино магнитное поле исчезает, остаётся только гравитационное.

Нейтрино — отрицательная гравитационная частица (масса). Нейтрон — положительная гравитационная частица (масса).

К нейтрино «подходит» 6 линий связи, это же количество «исходит» от нейтрона. Размеры сот приведены в расчётной части. Именно эти соты называютсявакуумом.