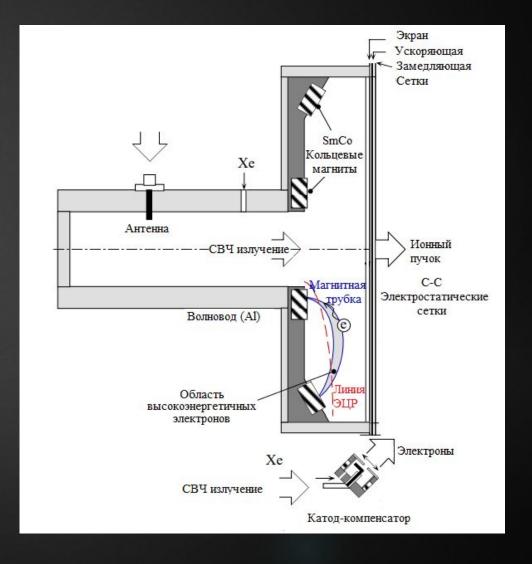
Ионный двигатель с СВЧ ионизацией


Студент: Гаджихалилова С.И.

Группа: Э8-101

Преподаватель: Семенкин А.В.

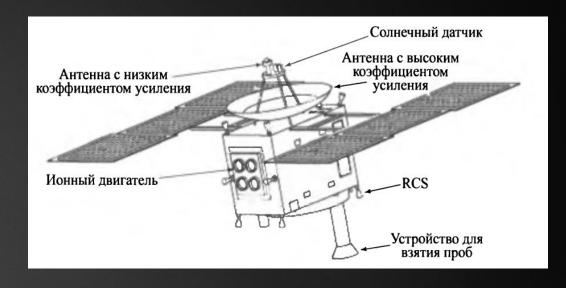
Принцип работы СВЧИД

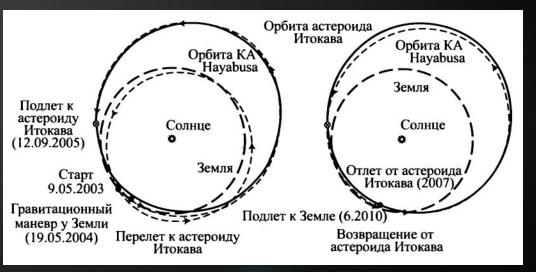
- Преимущества:
- Отсутствие электродов
- Быстрое зажигание разряда
- Упрощенная система токоподводов

Существующие на данный момент СВЧИД

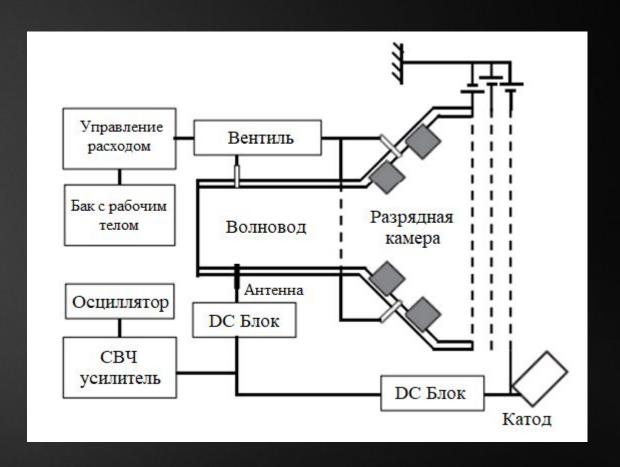
Япония (ЈАХА):

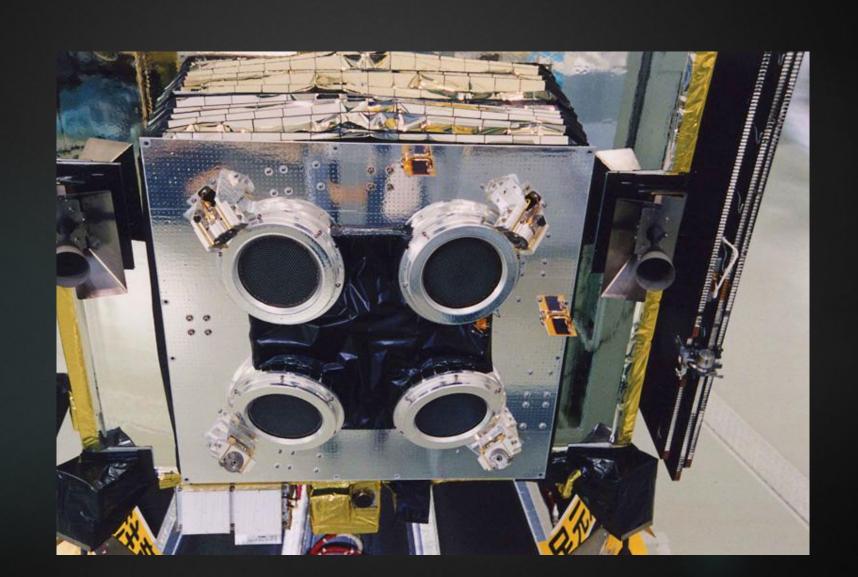
- µ10 (использовался в программе Hayabusa)
- μ1, μ20


США (NASA):


- The High Power Electric Propulsion (HiPEP) Ion Thruster

Программа Hayabusa


- Предназначена для изучения астероида
 Итокава и доставки образца его грунта на
 Землю
- «Хаябуса» был запущен 9 мая 2003 года японской ракетой-носителем М-5
- Применены четыре двигателя СВЧИД µ10
- При общей длительности миссии около семи лет наработка двигателей составила 40000ч



Ионный двигатель µ10

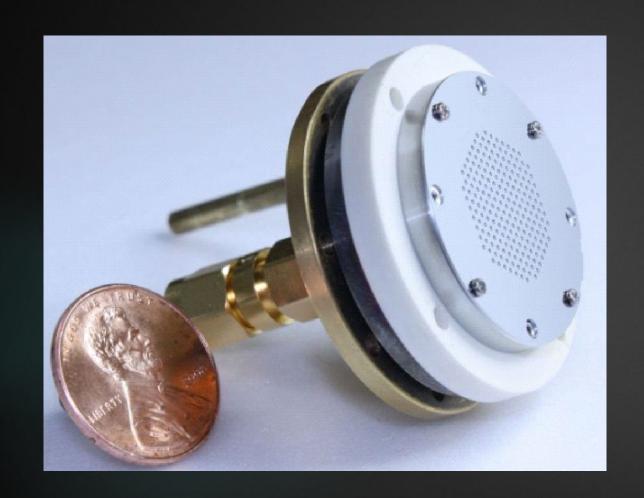
- Частота СВЧ излучения 4,25 ГГц
- Материал постоянных магнитов Sm-Co
- Сетки ИОС выполнены из С-С композитных материалов
- Тяга 8 мН
- Удельный импульс в начале полета
 3200с

Внешний вид µ10

Сравнительная таблица µ10 и µ20

	μ10	μ20
Диаметр пучка, см	10	20
Ускоряющее напряжение, В	1500	1200
Ток пучка, мА	140	500
Частота СВЧ излучения, ГГц	4,25	4,25
Мощность СВЧ излучения, Вт	32	100
Расход ксенона, см ³ /мин	2,9	11,2
Тяга, мН	8,5	25
Удельный импульс, с	3000	2800
Мощность, Вт	390	1000

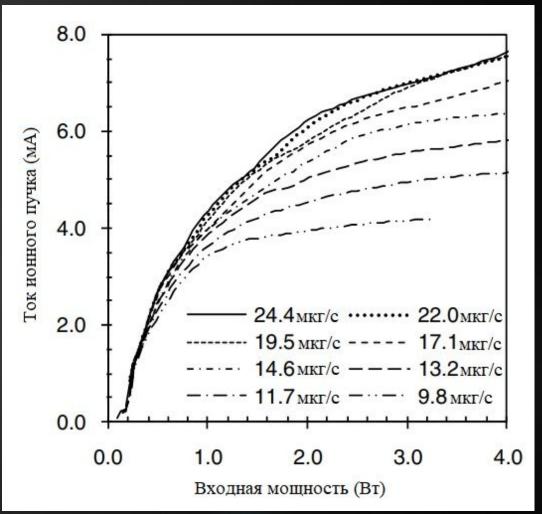
Внешний вид µ20



Микродвигатель µ1

Схема миниатюрного двигателя с СВЧ ионизацией µ1

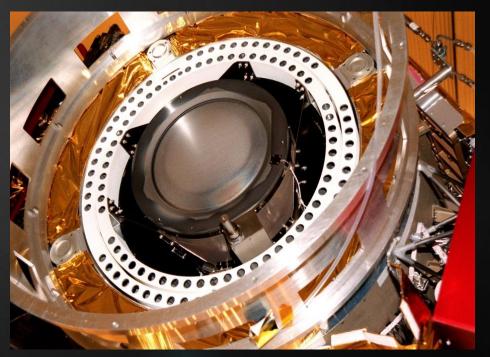
- Предназначен для небольшого космического корабля 10-100 кг
- Магниты образуют максимальное магнитное поле 0,30 Т вблизи поверхности магнита и минимальное поле 0,05 Т в самой удаленной точке от магнитов.

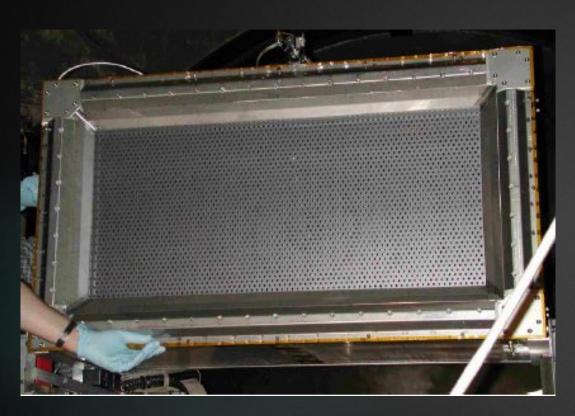

Внешний вид двигателя

Двигатель в процессе работы (вместе с катодом-компенсатором

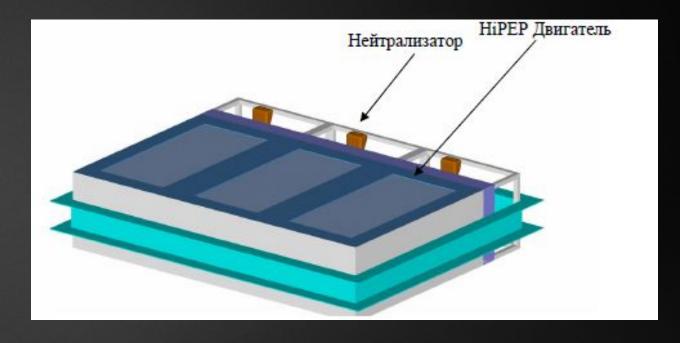
Характеристики двигателя µ1

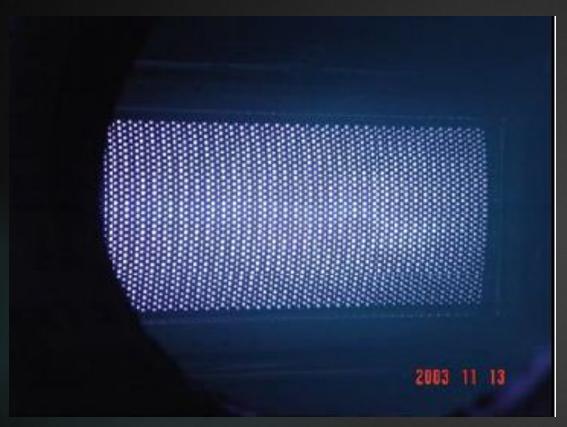
Параметры	μ1
Диаметр пучка, см	1
Ускоряющее напряжение, В	1500
Ток пучка, мА	4,48
Частота СВЧ излучения, ГГц	4,25
Мощность СВЧ излучения, Вт	1
Общий расход ксенона, мкг/с	26,3
Тяга, мкН	258
Удельный импульс, с	1290
Мощность, Вт	390
КПД двигателя, %	12,3
Цена ионизации р.т., Вт/А	224

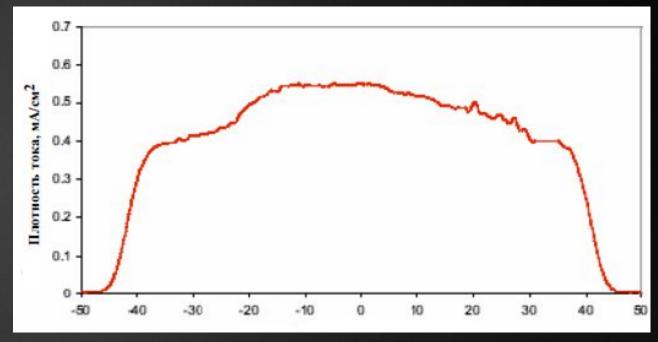

Зависимость тока ионного п<mark>учка от мощности СВЧ излучения и расхода рабочего тела</mark>


Высокомощный электрический двигатель HiPEP

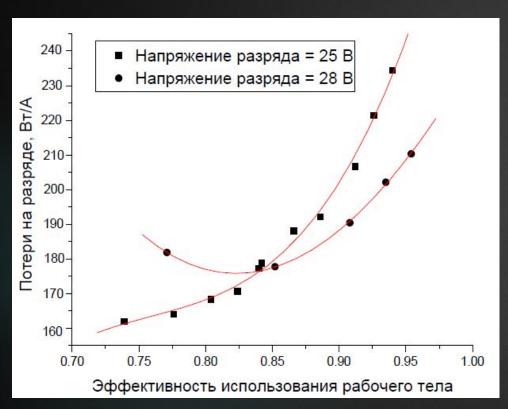
- Современное состояние в высокоэффективных электрических двигательных установок с большим удельным импульсом воплощено в ионном двигателе с NSTAR (NASA's Solar Electric Propulsion Application Readiness)
- Несмотря на всю свою значимость, использование технологии NSTAR недостаточно для удовлетворения требований к ресурсу и производительности для продолжительных миссий на дальние планеты. Например, Jupiter Icy Moon Orbiter (JIMO), имеет требование ΔV не менее 38 км/с это около 7-14 лет работы => строгие требования к времени жизни для компонентов и подсистем двигателя


Внешний вид ионного двигателя NSTAR американской AMC Deep Space 1


- Проект HiPEP подходит к проблеме генерации плазмы, используя 2 метода: генерация плазмы постоянного тока и с помощью микроволнового электронного циклотронного резонанса (ЭЦР)
- Микроволновый ЭЦР был исследован в рамках проекта HiPEP как один из подходов к устранению механизмов разрушения разрядного катода
- Целевая эффективность генерации плазмы для двигателя HiPEP < 200 Вт/А, в то время как использование рабочего тела в разрядной камере > 90%.
- форма магнитных колец варьируется от круглого до гибридного прямоугольного и прямоугольного


Прямоугольный двигатель HiPEP с большой площадью ионно-оптической системы

Концептуальное изображение двигательной установки HiPEP: прямоугольная геометрия двигателя позволяет интегрировать несколько в единый "пакет".



Фотография сетки работающего двигателя HiPEP, использующего микроволновый ЭЦР для генерации плазмы

Профиль пучка при токе пучка 1,64 А

Характеристики НіРЕР

Мощ-	Pac-	КПД	Тяга,	Удельный
ность, кВт	ход, мг/с	٨	ΑH	импульс, с
9,7	4,0	0,72	240	5970
15,9	4,9	0,74	340	7020
20,2	5,6	0,75	410	7500
24,4	5,6	0,76	460	8270
29,6	6,2	0,80	540	8900
34,6	6,6	0,77	600	9750
39,3	7,0	0,80	670	9620

Потери на разряде в HiPEP двигателе при расчетной точке

[(I = 8000c)

Характеристики двигателя DC HiPEP

Спасибо за внимание!