Характеристика элемента по Периодической системе Д.И. Менделеева

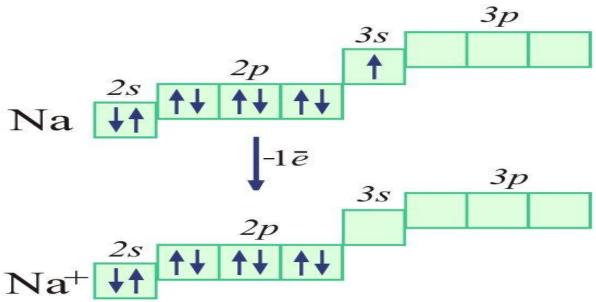
Периодическая система химических

						Π	e_M	eн	TC)B	Ш.	<i>V</i> 1.	\mathbb{N}	let		.ej	1e	Θ B	a						
ПЕРИОДЫ						Г	Р	У	П	П	Ы	Э)	Л	E	M	E	Н	Т	0	В				
	A I	В	Α	II E	3 A	Ш	В	Α	IV	В	Α	V	В	Α	VI	В	Α	VII	В	Α		VIII			В
1	Н 1.0079 Hydrogenium Водород																(H)		He Helium Гелий	4.002602	:			
2	Lithium Литий 6.941		Be Berylliur Берилл		B Borus Bop	n 1	5 ½ 0.811	Carbon Yrnepo	neum	_6_4 011	Nitroge A30T	14.00 enium		Охуделі Кислор	um	_8_ ⁶ ₂ 999	Fluorui Фтор	18.9	9 ⁷ ₂ 998	Ne Neon Heon	20.179				
3	Na 22.99 Natrium Натрий	2	Mg Magnes Marhuŭ	ium		inium миний	13 3 26.9815 ²	Sillicium Kpemi	28. 0	14 4 086	Phospi Фосф			Sulfur Cepa		16 8 066	Chloriu Xлор	35.4	17 ⁷ ₈ 453	Argon Apron	39.948 ²				
4	Kalium Калий	B 2	Са Calcium Кальци		2 2 21 8 8 2 44	S	Sc candium кандий	22 2 47.9	Tita	Ті anium Гитан	23 8 50.9	941 Vanad Baнад	Um INЙ	13 24 8 51.99	Chro	Cr omium Xpom	25 13 25 2 54.5	Mang	In anum aнец	2 26 a 55.84	Ferrum Железо	Col	CO baltum бальт	28 8 58.70	Niccolui Никел
4	29 2 63.546 Cupri	um	30 5 65.39	Zn Zincur Цин		ım	31 ³ ₁₈ 59.72 ²	Germa Герма	nium	32 ⁴ ₁₀ 59 ⁸ ₂	As Arsenie Mышь	cum	3 5 10 2 2	Se Seleniur Ceлен	78 .	34 6 10 96 2	Вготи		35 7 904 2	Krypton Kpиптон	36 8 83.80 2				
	Rb 85.468 Rubidium Рубидий	2	Sr Strontius Стронц			.906	Yttrium Иттрий	2 40 10 40 18 91.2	Zirco	Zr onium соний	12 41 18 92.5	Niob Huo	um	1 42 18 95.94 2 Me	olybda	о пепит пбден	2 43 10 97.5	Techn	ГС etium еций	16 44 18 101.0 2 F	Ruthhenium Рутений		Rh nodium Родий		Polladiu aллади
5	47 107.868 Argenti Cepe6	um	48 18 112.4	Cadmiur	Indiu	m	49 ³ 18 14.82 ¹⁸ 8	Stannu Oлово	ım	50 18 3.71 8 2	Stibium Cyps	1		Te Tellurium Теллур	n	52 18 7.60 18 2	lodum Иод	126.9	53 7 18 0045 8 2	Xe Xenon Kcehoh	131.29				
c	СS 132.90 Сезіцт Цезий	8 2	Ba Barium Барий	137.33	2 8 57 16 18 138 8 8 2 2	.9055 Lar	La*	72 10 32 18 178	Ha	Hf Infinium фний	73 32 18 180	.9479 Tanta Tan	um	2 74 32 183.8 8 2	Wolfra	W imium фрам	2		Re enium eний	76 32 18 190.2	Os Osmium Осмий		Iridum ридий	78 177 18 195.08	Р Platinu Плати
6	79 18 196.967 Auru 3000	um	2 80 32 200.5 # H	Hg lydrargyrur Pryt	n Thall	um	81 3 18 204.38 32 18 18	Рымы Свине	um	82 4 7.19 32 18 8 2	Bi Bismut Bucmy		30 18	Polonium Полони	n	84 18 9.98 18 8 2	At Astatiu Actat	209	85 7 18 0.99 32 18 8 2	Rn Radon Радон	[222] 33 [222]				
7	Fr [223] Francium Франций	18 32 18 8	Ra Radium Радий	[226]	2 8 9 8 89 18 18 18 32 32 [2 18 18 8 8 8 2 2		C** Actinium		1] Rutherfo езерфо	Rf ordium opguй	11 105 32 [262 18 8	Dubni Ay6	um	2 106 32 [263] 18 8 2	Seabo	S g orgium oргий	R	Bo	Bh hrium орий	2 108 32 [265] 18 8 2	Hs Hassium Хассий		Mt nerium нерий	2 110 32 [269] 18 8 2	
ФОРМУЛЫ ВЫСШИХ ОКСИДОВ	R₂O		F	२०		R ₂ C)3		RO ₂			₹ 2 0 5		F	RO3		F	R_2O_7				RO ₄	1		
ФОРМУЛЫ ЛЕТУЧИХ ОДНОРОДНЫХ СОЕДИНЕНИЙ								RH₄	1		RH	3		RH_2			RH								
ЛАНТАНОИДЫ*	церий ;	П	Pr seodymium разводим	F Neod	утіит 🖇		nethium §	Can	m narium нарий	Ē	игоріит 3 вропий	Гадолі	иний	9	Terbium Тербий	1	50 Dy Dysprosiu Диспрози	n i	Голы Голы	ium 3 лий	Erbium \$ Эрбий	168.934 Thulium Тулий		Yb 171 terbium горбий	Lutetiu Лютеци
АКТИНОИДЫ**	390 Th 3232.038 Thorium Торий	P	Pa rotactinium отактиний	15 Ui	anium Ypan	237.05 Nep	Np otunium otunium	244.06 Plut	Pu 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	95 143.06 An	Am nericium ериций		m urium opuй		Bk ercelium epклий	98 251.	.08 Californiui алифорни	99 252.	08 Einstein Энштей			258,10 Md Менделевий		No belium белий 26	0.10 Lawrencii Лауренс

МЕТАЛЛЫ И НЕМЕТАЛЛЫ

пери-										гру	/ППЕ	ы э	лем	ентов	Si .							
оды	а	I	б	a II	б	а	Шб	аГ	Vб	а	V	б	а	VI 6	а	VII 6		а	V	Ш		б
1			200		25.425		400								Водо	1 Род 1s ¹	Не	2 1s ²		11		
2	Li		3 2s ¹	Ве	4 25 ²	B	5 2s²2p¹	С углерод	6 2s ² 2p ²	N A3OT	2s ²	7 203	Юислов	8 ≈од 2s ² 2p ⁴	F	9 2s ² 2p ⁵	Ne	10 2s ² 2p ⁶				
3	Na HATPUÑ	ĺ	11 3s ¹	Mg	12 3s ²	Алюм	13 инии . ² 30 ¹	Si KPEMHUM	14 3s ² 3p ²	P	op 3s²3	15 ₃p³	S	16 3s ² 3p ⁴	C	17 3s ² 3p ⁵	A I	18 3s ² 3p ⁶				
4	Калий		19 4s ¹	Са	20 4s ²	21 3d ¹ 4s ²	Sc скандий	22 3d ² 4s	Ті	23 3d ³ 4s ²	BAHA	V Дий	24 3d ⁵ 4s ¹	Cr	25 3d ⁵ 4s ²	Mn	26 3d ⁶ 4s ²	Fe	27 3d ⁷ 4s ²	Со	28 3d ⁸ 4s ²	Ni
100MP :	29 3d ¹⁰ 4s ¹	C	U MEDL	30 3d ¹⁰ 4s ²	Zn uhk	G	Д 31 и 4s²4p¹	Ge	32 й 4s ² 4p ⁻	As NULS	9	33 4 ₀ 3	Se	34 4s ² 4p ⁴	В	r 35 4s ² 4p ⁵	Ки	• 36 н 4s²4p ⁶				
5	Rt РУБИДИ) À	37 5s ¹	Sr	38 5s ²	39 4d ¹ 5s ²	. Y	40 4d ² 5s ² ци	Zr	41 4d ⁴ 5s ¹	HA	b	42 4d ⁵ 5s ¹ n	Мо иолибден	43 4d ⁵ 5s ²	Тс	44 4d ⁷ 5s ¹	Ru	45 4d ⁸ 5s ¹	Rh	46 4d ¹⁰ 5s ⁰ 1	Pd
2000	47 4d ¹⁰ 5s ¹	CEP	g	48 4d ¹⁰ 5s ² K	Cd	In	49 5s ² 5p ¹	Sn	50 5s ² 5p ²	Sh	British St.	51 ² 5ρ ³	TEJUNA	52 55 ² 5p ⁴	П	53 5s ² 5p ⁵	Хе	54 5s ² 5p ⁶				
6	Cs LIESUIÑ		55 6s ¹	Ва	56 6s ²	57 5d ¹ 6s ²	La*	72 5d ² 6s ²	Hf	73 5d ³ 6s ²	TAH	2 TAJI	74 5d ⁴ 6s ² s	ВОЛЬФРАМ	75	Re	76 5d ⁶ 6s ²	OS OCMUÑ	77 5d ⁷ 6s ²	II° иридий	78 5d ⁹ 6s ¹	Pt
	79 5d ¹⁰ 6s ¹	A	U a	80 5d ¹⁰ 6s ²	Ig	TATUL	81 na 6s²6p¹	РЬ	82 6s ² 6p ²	Bi		83 6p ³	Ро	84 ий 6s ² 6p ⁴	A	85 65°64	Rn	86 6s ² 6p ⁶				
7	Fr	й	87 7s ¹	Ra	88 7s ²	89 6d ¹ 7s ²	Ас*	104 6d ² 7s ² PESER	Rf	105 6d ³ 7s ²	Дуб	b	106	Sg	107 667s	ВЬ	108 6d ⁶ 7s ²	HS	109 6d ⁷ 7s ² M	Mt		

Если от элемента бора (В) провести условную линию к элементу астату (At), то в главных подгруппах окажутся: - металлы. Элементы, оказавшиеся вблизи этой линии проявляют переходные свойства. Неметаллов, включая благородные газы, насчитывается 22, все остальные элементы, в том числе и вновь синтезируемые, относятся к металлам. В побочных подгруппах находятся только металлы. Для металлов характерно небольшое число электронов на внешнем энергетическом уровне (1-3) и электроотрицательность ниже 2. Неметаллам присуща высокая электроотрицательность, 4 и более электронов на внешнем уровне. При образовании химических связей атомы металлов отдают внешние электроны, а атомы неметаллов их захватывают.


СТРОЕНИЕ АТОМА

Атомы имеют сложное строение: вокруг положительно заряженного массивного ядра движутся по определённым орбитам с огромной скоростью практически невесомые отрицательно заряженные электроны.

Ядро состоит из нуклонов – протонов(+) и нейтронов(0). По форме орбиты электроны бывают 4 типов: s, p, d и f и образуют электронные облака (орбитали) 4 видов. Общее число электронов в атоме равно числу протонов в ядре, а число электронов на внешнем уровне (у элементов главных подгрупп) равно номеру группы. Число энергетических уровней (электронных слоёв) в атоме равно номеру периода.

ФОРМУЛЫ АТОМОВ

В современной химии строение атомов принято изображать при помощи электронно-графических формул. На этой схеме показано строение 2-го и 3-го электронных уровней атома Na и превращение его в ион 1

ФОРМУЛЫ АТОМОВ

На таких формулах квадратом обозначается электронная орбиталь, стрелки внутри квадрата символизируют электроны, этажное расположение обозначает уровни и подуровни электронов. Графическая часть формулы подтверждается буквенно-цифровым обозначением. Отсюда их название: электронно-графические формулы.

ПОЛОЖЕНИЕ В СИСТЕМЕ

По положению в Системе можно определить:

- 1. Заряд ядра, число протонов в ядре и общее число электронов = порядковый номер элемента;
- 2. Число энергетических уровней (электронных оболочек) = номер периода;
- 3. Число электронов на внешнем уровне у элементов главных подгрупп = номер группы;
- 4. Металл или неметалл по расположению относительно линии «B-At».

ХАРАКТЕРИСТИКИ ЭЛЕМЕНТА

Химический элемент можно характеризовать по следующим пунктам:

- 1. Положение в Периодической системе;
- 2. Металл или неметалл;
- 3. Электроотрицательность, то есть сила притяжения электронов к ядру;
- 4. Степень окисления, то есть число отданных или захваченных в процессе образования данного вещества, электронов (применяется к любым химическим элементам);
- 5. Валентность, то есть число образованных в данном веществе общих пар электронов (корректнее применять эту характеристику только к неметаллам).

ВЗАИМОДЕЙСТВИЯ АТОМОВ

Для атомов присуще стремление приобрести более устойчивую и энергетически выгодную электронную конфигурацию, характерную для благородных газов (завершённый внешний энергетический уровень - «электронный октет»). В результате взаимодействия между собой, атомы более электроотрицательных элементов захватывают электроны на внешний уровень, а атомы менее электроотрицательных элементов отдают свои внешние электроны.

Каждый элемент занимает строго отведенную ему ячейку, которая расположена в определенном периоде и определенной группе.

В каждой ячейке содержится информация об элементе:

- символ элемента
- -название элемента
- -порядковый номер
- -его атомная масса

План – алгоритм характеристики элемента по его положению в ПСХЭ Д. И. Менделеева

- 1. Название
- 2. Химический знак, относительная атомная масса (Ar)
- 3. Порядковый номер
- 4. Номер периода (большой 4-7 или малый 1-3)
- 5. Номер группы, подгруппа (главная «А» или побочная «Б»)
- 6. Состав атома: число электронов, число протонов, число нейтронов

Подсказка!

- Число электронов = числу протонов = порядковому номеру;
- Число нейтронов = атомная масса (Ar из таблицы Менделеева) число протонов.

7. Вид элемента (s, p, d, f)

Подсказка!

- 1.s-элементы: это первые два элемента в 1-7 периодах;
- 2.р-элементы: последние шесть элементов 1-6 периодов;
- 3.d-элементы: это элементы больших периодов (по 10 штук) между s- и p-элементами;
- 4.f- элементы: это элементы 6 и 7 периодов лантаноиды и актиноиды, они вынесены вниз таблицы.

8. Схема строения атома (распределение электронов по энергоуровням), завершённость внешнего уровня.

Подсказка!

Внешний уровень завершён у элементов VIII группы главной подгруппы "A" - Ne, Ar, Kr, Xe, Rn.

Подсказка! Для написания схемы нужно знать следующее:

- 1. Заряд ядра атома = порядковому номеру атома;
- 2. Число энергетических уровней определяют по номеру периода, в котором находится элемент;

4. У d - элементов на последнем уровне число электронов всегда равно 2 (исключения — хром, медь, серебро, золото и некоторые другие на последнем уровне содержат 1 электрон).

Максимальное возможное число электронов на уровнях определяют по формуле: $N_{\text{электронов}} = 2n^2$, где n - номер энергоуровня.

Например, I уровень — 2 электрона, II — 8 электронов, III — 18 электронов, IV— 32 электрона и т.д.

9. Электронная и электронно-графическая формулы строения атома

Подсказка!

Для написания электронной формулы используйте шкалу энергий:

s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s...

Помните! На s — орбитали максимум может быть 2 электрона, на p — 6, на d — 10, на f — 14 электронов. Например, $_{+11}$ Na $1s^22s^22p^63s^1$; $_{+22}$ Ti $1s^22s^22p^63s^23p^64s^23d^2$

10. Металл или неметалл

Подсказка!

- 1. <u>К неметаллам</u> относятся: 2 s-элемента водород и гелий и 20 p-элементов бор, углерод, азот, кислород, фтор, неон, кремний, фосфор, сера, хлор, аргон, мышьяк, селен, бром, криптон, теллур, йод, ксенон, астат и радон.
- 2.<u>К металлам</u> относятся: все d- и f-элементы, все sэлементы (исключения водород и гелий), некоторые pэлементы.

11. Высший оксид (только для s, p)

Подсказка!

Общая формула высшего оксида дана под группой химических элементов (R₂O, RO и т.д.)

12. Летучее водородное соединение (только для s, p)

Подсказка!

Общая формула летучего водородного соединения дана под группой химических элементов (RH₄, RH₃ и т.д.) – только для элементов 4 -8 групп.

<u>План описания химического</u>

элемента

- 1. Находим химический элемент в таблице. Название, обозначение и по его положению описываем строение его атомов. Порядковый номер, период, группа.
- 2. Планетарная модель атома, атомная масса, масса протонов и нейтронов.
- 3. Электронная формула и электронный паспорт до последнего уровня.

$S^2 p^6 d^{10} f^{14}$

- 5. Возможные валентности (определяются по числу неспаренных электронов)
- 6. Возможные степени окисления (определяются по числу электронов, которые атом может «принять» «отдать»)
- 7. Высший оксид и водородное соединение.