
Эффекторные механизмы иммунитета

Функции клеточных систем иммунитета:

- 1. **Эффекторные** реакции поглощение, разрушение и выведение антигена из организма;
- 2. Регуляторные реакции инициирование, стимуляция и торможение иммунологических реакций.

Эффекторные механизмы иммунитета состоят в том, что распознавшие (связавшие) антиген рецепторы — TCR на поверхности Т-лимфоцита и/или иммуноглобулины в растворе физически подводят связанный антиген к таким клеткам или ферментам, которые специально предназначены для расщепления, окисления антигена до мелких метаболитов, которые организм может вывести через свои системы выделения (почки, ЖКТ)

Эффекторные механизмы иммунитета направлены на связывание и элиминацию патогенов.

Классификация эффекторных механизмов:

- Антителозависимый, или гуморальный иммунитет
- Опосредованный клетками (антителонезависимый), или клеточный иммунитет

Антителозависимые механизмы защиты от патогена

Таких механизмов по крайней мере 6:

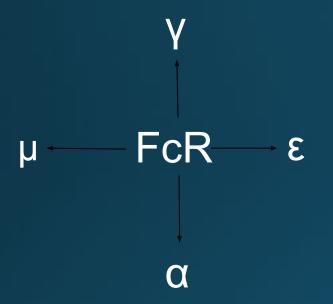
- нейтрализация антителами патогенных свойств антигена самим фактом связывания в комплекс;
- элиминация и деструкция комплексов антиген—антитело фагоцитами (нейтрофилами и макрофагами);
- деструкция комплексов антиген—антитело активированной системой комплемента;
- антителозависимая клеточная цитотоксичность NK и эозинофилов;
- сосудистые и гладкомышечные контрактильные реакции, инициируемые комплексом антиген—антитело с «наймом» тучных клеток и базофилов;
- •реликтовые свойства антител (собственная протеазная или нуклеазная активность антител).

АНТИТЕЛОЗАВИСИМЫЕ МЕХАНИЗМЫ ЗАЩИТЫ

Опсонизация и запуск системы комплемента

Связывание антител с антигеном является защитным:

- если антиген сильный яд
- если антиген представлен на поверхности патогена


Способность связывать комплемент у иммуноглобулинов разных классов различается (IgM > IgG3 > IgG1).

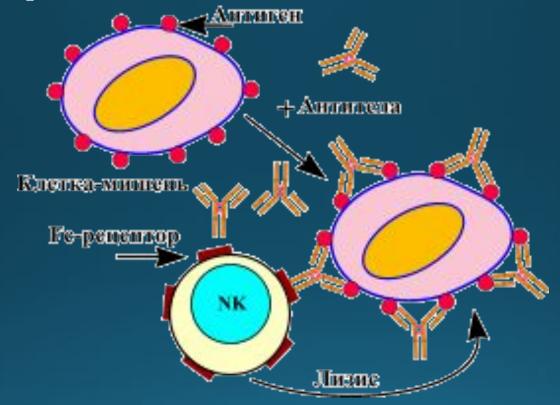
Комплексы антиген-антитело-компоненты комплемента транспортируются эритроцитами, имеющими рецепторы для компонентов комплемента, в синусоиды селезёнки и печени, где их фагоцитируют и расщепят макрофаги.

Fc-рецепторы

Fc-рецепторы (FcR) - семейство мембранных рецепторов клеток иммунной системы, главной функцией которой является распознавание и связывание Fc-фрагмента иммуноглобулинов, находящихся в свободном состоянии и в составе иммунного комплекса. FcR, наряду с TCR и BCR, можно отнести к иммунорецепторам, поскольку клетканоситель FcR способна связать антиген (пусть и посредством антител) и отвечать на него. FcR выявлены не только на лимфоцитах, но и на всех известных лейкоцитах.

Типы и разновидности FcR

Греческая буква обозначает связываемый тип тяжелой цепи, т.е. изотип иммуноглобулина.

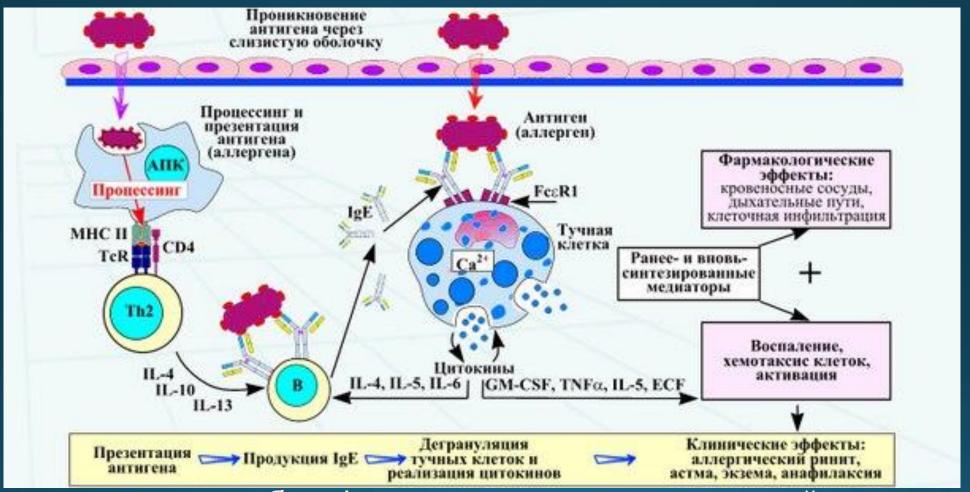

Аффинность рецептора

«Fc» означает, что лиганд для связывания — константный фрагмент («хвост») молекулы иммуноглобулина.

Таблица 8.2. Типы Fc-рецепторов

	Тип						
Свойства	FcyRI (CD64)	FcyRII-A (CD32)	FcyRII-B2 (CD32)	FcyRII-B1 (CD32)	FcyRIII (CD16)	FceRI*	FcαRI (CD89)
Структура (цепи, мол. масса х 1000)	х (72 000) У	α (40 000) (есть у-по- добный домен)	1 цепь, содержит ITIM	1 цепь, содержит ITIM	α (50 000 или 70 000); у или ζ	α (45 000) β (33 000) У (9000)	α (55 000- 75 000) У (9000)
Изотип связы- ваемого имму- ноглобулина, константа дис- социации	IgG1 (=IgG3> IgG4>IgG2), 10 ⁸ M" ¹	IgGl (>IgG3=IgG2 >IgG4), 2×10 ⁶ M" ¹	IgGl (=IgG3>IgG4 >IgG2), 2×10 ⁶ M' ¹	IgGl (=IgG3>IgG4 >IgG2), 2×10 ⁶ M" ¹	IgGl (=IgG3), 5×10 ⁵ M'	IgE 10 ¹⁰ M- ¹	IgA1 (=IgA2), 10 ⁷ M" ¹
На каких клет- ках экспресси- рован	Макрофаги, нейтроф)илы, эозиноф)илы, дендритные клетки	Макрофаги, нейтроф)илы, эозиноф)илы, тромбоциты, клетки Лан-герганса	Макрофаги, нейтросрилы, эозинофилы	ты, тучные	NK, эозино- филы, мак- рофаги, ней- трофилы, туч- ные клетки	филы, базо-	Макрофаги, нейтрофилы, эозинофилы
Биологические эффекты при связывании	Стимуляция эндоцитоза, фагоцитоза, дыхательного взрыва, кил-линга	Стимуляция эндоцитоза, дегрануляция эозинофилов	Поглощение рецептора и ингибиция стимуляции	Ингибиция стимуляции без погло- щения ре- цептора	Стимуляция киллерной активности NK	Дегрануля- ция, эндо- цитоз	Поглощение рецептора и индукция кил-линга

Антителозависимая клеточная цитотоксичность



Феномен АнтителоЗависимой Клеточной ЦитоТоксичности (АЗКЦТ) проявляется, когда антитело связывает антиген на поверхности какой-либо клетки-мишени и через Fcфрагмент привлекает для ее разрушения эффекторные клетки (NK-клетки, макрофаги, эозинофилы и др.).

Таблица 8.3. Биологически активные продукты эозинофилов

Тип продукта	Конкретные продукты	Биологические эффекты		
Фермены	Эозинофильная пероксидаза	Вызывает выброс гиста- мина из тучных клеток; токсична за счет катали- за галогенизации суб- сгратов		
	Эозинофильная коллагеназа	Вызывает «ремоделлинг» межклеточного вещества соединительной ткани		
Токсичные протеины	Большой основный протеин (МБР — major basic protein) Эозинофильный катионный протеин (ЕСР — eosinophil cationic protein) Нейротоксин эозинофилов (ЕNТ — eosino-	Токсичен для гельминтов и собственных клеток, вызывает выброс гистамина из тучных клеток Токсичен для гельминтов и нейронов		
Цитокины	phil-derived neurotoxin) IL-3, IL-5, GM-CSF	Стимулируют эозинопоэз в костном мозге; активи-		
Хемокины	IL-8	руют эозинофилы на периферии Обеспечивает инфлюкствейкоцитов в очаг		
Липидные медиаторы	Лейкотриены С4 и D4	Сокращают гладкие мышцы; повышают проницаемость сосудов, усиливают секрецию слизи		
	Тромбоцитактивирую- щий фактор (PAF — platelet-activating factor)	Усиливает продукцию липидных медиаторов; активирует нейтрофилы, эозинофилы и тромбоциты; является хемоаттрактантом для лейкоцитов		

Гиперчувствительность немедленного типа

Цитокины тучных клеток и базофилов поддерживают иммунный сдвиг в дифференцировке субпопуляций CD4⁺ T-лимфоцитов в сторону Th2 (ИЛ-4, ИЛ-13), а также поддерживают дифференцировку и активацию эозинофилов (ИЛ-5, ИЛ-3, GM-CSF). Мишени для цитокинов - клетки гладкой мускулатуры и эндотелия.

Базофильные лейкоциты и тучные клетки

- Тучные клетки локализованы в соединительной ткани собственного слоя слизистых оболочек (laminapropria mucosae), в подкожной соединительной ткани и соединительной ткани, расположенной по ходу всех кровеносных сосудов.
- Тучные клетки слизистых оболочек из сериновых протеаз экспрессируют триптазу и химазу, секретируют минимум гистамина; из протеогликанов в них преобладает хондроитинсульфат; из метаболитов арахидоновой кислоты лейкотриен С4 (LTC4).
- Тучные клетки соединительной ткани локализованы в серозных оболочках полостей тела и в лёгких. Из сериновых протеаз экспрессируют преимущественно триптазу, из протеогликанов гепарин, секретируют много гистамина, из метаболитов арахидоновой кислоты в них преобладает простагландин D2.

Базофилы

Циркулируют в крови и мигрируют в ткани только в очаг воспаления (как нейтрофилы). На базофилах экспрессированы молекулы адгезии, важные для хоминга в очаг: LFA-1 (CD11a/CD18), Mac-1 (CD11b/CD18), CD44.

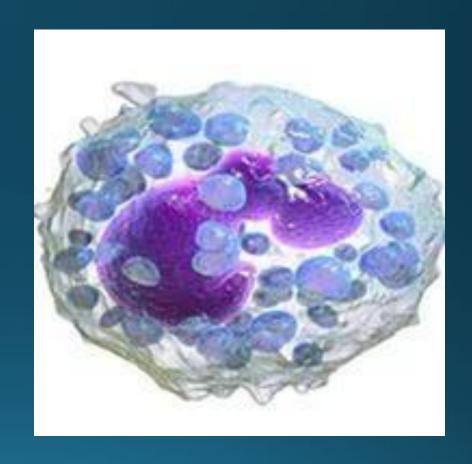
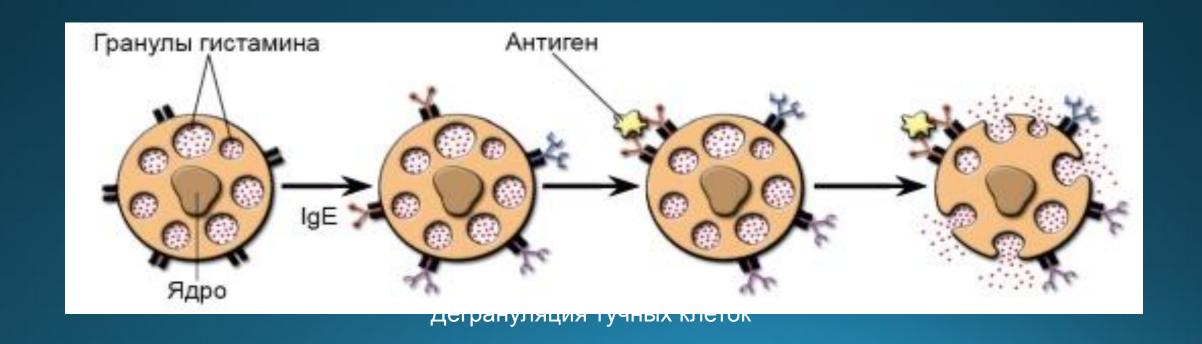
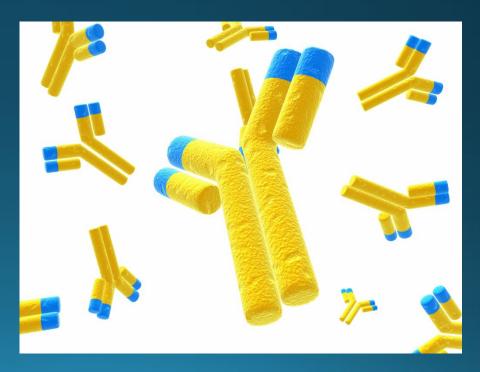


Таблица 8.4. Медиаторы тучных клеток и базофилов и их биологические эффекты


Тип медиатора	Примеры	Биологические эффекты		
Ферменты	Триптаза и хима- за (сериновые про- теазы), катепсин G, карбоксипеп- тидаза	Ремоделлинг матриксного вещества соединительной ткани		
Вазоактивные	Гистамин	Расширение сосудов и повы-		
амины	(у человека); серотонин (у грызунов)	шение проницаемости; сокра- щение гладких мышц; токсич- ны для гельминтов		
Протеогликаны	Гепарин, хондро-	Связывают и удерживают		
	итинсульфат	ионными силами положитель- но заряженные молекулы био- генных аминов		
Цитокины	TNF-α	Провоспалительное действие: активирует эндотелий и коа- гуляцию крови, стимулирует выработку цитокинов другими клетками в очаге воспаления		
	IL-3, IL-5, GM-CSF	Стимулируют дифференцировку и активацию эозинофилов		
	IL-4, IL-13	Стимулируют дифференцировку субпопуляции Th2		
Липидные	Лейкотриены С4,	Пролонгированное сокраще-		
медиаторы	D4, Ē4	ние гладких мышц, повышение проницаемости сосудов, стимуляция секреции слизи		
	Простагландины (PGD, PGE,)			
	PAF (platelet-acti-	Усиливает продукцию липид-		
	vating factor) — фактор активации тромбоцитов	ных медиаторов; хемоаттрактант и активатор для тромбоцитов, нейтрофилов, эозинофилов		

Медиаторы тучных клеток и базофилов

- Гистамин
- Липидные медиаторы
- Простагландин D₂
- Лейкотриены (LTC₄, LTD₄, LTE₄)
- Фактор активации тромбоцитов (ФАТ)
- Ферменты тучных клеток и базофилов
- Цитокины тучных клеток и базофилов


Активация

- Гомотипная агрегация FceRI. Клетки активируются комплексом IgE с антигеном или антителами к рецептору. FceRI способен связывать свободные IgE-антитела до того, как они свяжут свой антиген. Клетки с комплексом IgE-FceRI на мембране тучных клеток находятся в состоянии готовности в считанные секунды и минуты осуществить дегрануляцию в ответ на распознавание поступившего антигена. Ход событий: антиген взаимодействует с Fabфрагментами IgE и активированная этим сигналом тучная клетка подвергается дегрануляции.
- Анафилатоксины фрагменты компонентов системы комплемента, образующиеся при развитии каскада.
- Медиаторы из активированных нейтрофилов.
- Нейромедиаторы (норадреналин, вещество Р).

Реликтовые свойства антител

- пептидазная активность;
- способность связывать нуклеотиды и способность
- расщеплять полинуклеотиды;
- способность связывать металлы;
- способность связывать суперантигены.

ЭФФЕКТОРНЫЕ МЕХАНИЗМЫ, ОПОСРЕДОВАННЫЕ КЛЕТКАМИ

Антителонезависимые эффекторные механизмы иммунитета в первую очередь реализуют ЦТЛ. К ним относят CD8⁺ Tαβ-лимфоциты и NKT-клетки - лимфоциты, одновременно экспрессирующие рецепторы NK- и T-клеток. Есть Т-киллеры и среди Тγδ-лимфоцитов.

- Киллерная функция.
- Синтез цитотоксинов
- Накопление цитотоксинов
- Дегрануляция ЦТЛ
- Перфорин
- Гранзимы и апоптоз
- Лизис мишени

ЭФЕКТОРНЫЕ МЕХАНИЗМЫ, ОПОСРЕДОВАННЫЕ КЛЕТКАМИ

- Цитокины. CD8⁺ ЦТЛ продуцируют цитокины ИФНγ, ФНОα и ФНОβ(лимфотоксин). Эффекты **ИФН**γ:
- непосредственно подавляет репликацию вирусов;
- индуцирует в клетках-мишенях повышенную экспрессию молекул МНС-I и МНС-II, способствуя более эффективной презентации вирусных антигенов Т-лимфоцитам: и для распознавания, и для киллинга;
- активирует макрофаги и NK-клетки;
- служит кофактором при индукции дифференцировки наивных CD4⁺ T лимфоцитов в Th1-клетки. Это означает, что CD8⁺ ЦТЛ вносят вклад в развитие других эффекторных механизмов иммунного ответа с участием Th1-лимфоцитов.

ГИПЕРЧУВСТВИТЕЛЬНОСТЬ ЗАМЕДЛЕННОГО ТИПА

Гиперчувствительность замедленного типа (ГЗТ) - воспаление тканей, «организуемое» CD4⁺ T-лимфоцитами субпопуляции Th1 - продуцентами ИФНу. Клетками-исполнителями служат активированные макрофаги. Если в очаге инфекции происходит активация макрофага CD4⁺ Th1-лимфоцитом, микробицидные возможности макрофага существенно увеличиваются, и он более эффективно разрушает поглощённые патогены.

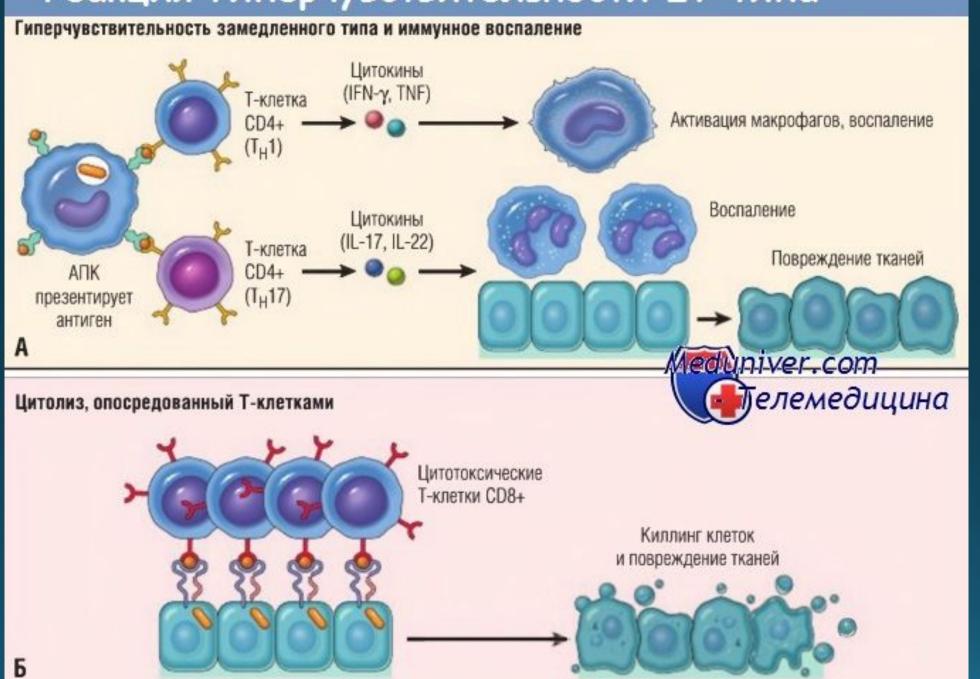
Активация макрофага. Для активации макрофага необходимы 2 типа воздействия со стороны лимфоцитов:

- контактное молекула CD40L на Thl-лимфоците связывается с молекулой CD40 на макрофаге;
- **цитокиновое -** ИФНү, продуцируемый Th1-клеткой, CD8⁺ ЦТЛ или NK-клеткой, связывается с рецептором на макрофаге;

Инфицированный макрофаг имеет больше шансов вступить во взаимодействие с Th1-клеткой, что обусловлено распознаванием Т-клеткой антигена на поверхности макрофага. В результате именно этот макрофаг получит активирующие сигналы от Т-клетки через интерферон и CD40L.

Ингибитор активации макрофагов - ИЛ-10.

Очаг воспаления


Цитокины активированных макрофагов – ФНОа(фактор некроза опухоли), ИЛ-1 и хемокины - создают очаг воспаления в виде плотных на ощупь узелков разного размера.

Среди клеток, присутствующих в очаге, в первые 6-8 ч преобладают нейтрофилы, затем макрофаги и Th1-лимфоциты. Плотность клеток в свежем очаге ГЗТ невелика.

Сроки развития реакции. ГЗТ получила такое название, поскольку между моментом проникновения антигена в ткань и развитием характерного очага плотного воспаления проходит не менее 24-48 ч. После связывания антигена Th1-клетке требуется примерно 1 ч для индукции биосинтеза цитокинов, а также для синтеза и экспрессии на мембране молекулы CD40L.

Эффекты факторов роста. Стандартная защитная реакция - развитие очага воспаления по типу ГЗТ, однако в патологических случаях цитокины, выделяемые активированными макрофагами, вызывают фиброзное перерождение тканей: тромбоцитарный фактор роста PDGF (Platelet-Derived Growth Factor) стимулирует пролиферацию фибробластов, а вырабатываемый CD4⁺ Т-лимфоцитами и макрофагами ТФР-β стимулирует синтез коллагена. Кроме того, факторы роста, вырабатываемые макрофагами, вызывают образование дополнительных кровеносных сосудов - ангиогенез.

Реакция гиперчувствительности IV типа

СПАСИБО ЗА BHMAHA HAZEROCE, BAM BCE БЬПО ПОНЯТНО! risovach.ru