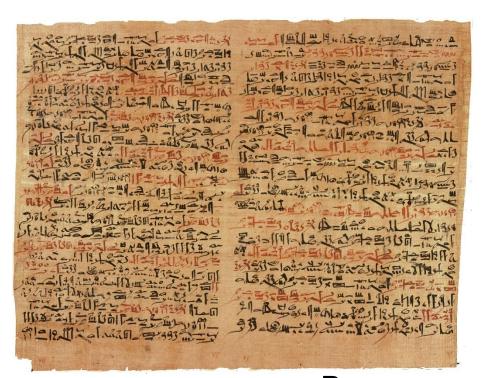
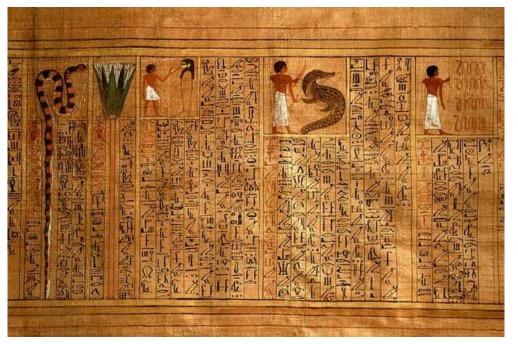
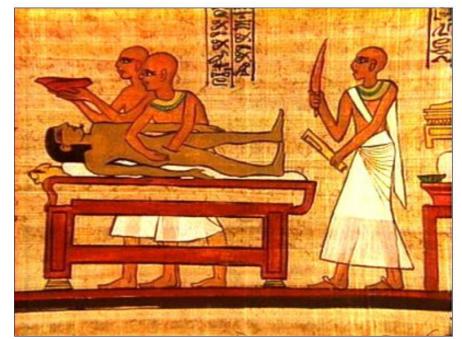

Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации (ФГБОУ ВО РязГМУ Минздрава России)


Кафедра сердечно-сосудистой, рентгенэндоваскулярной, оперативной хирургии и топографической анатомии

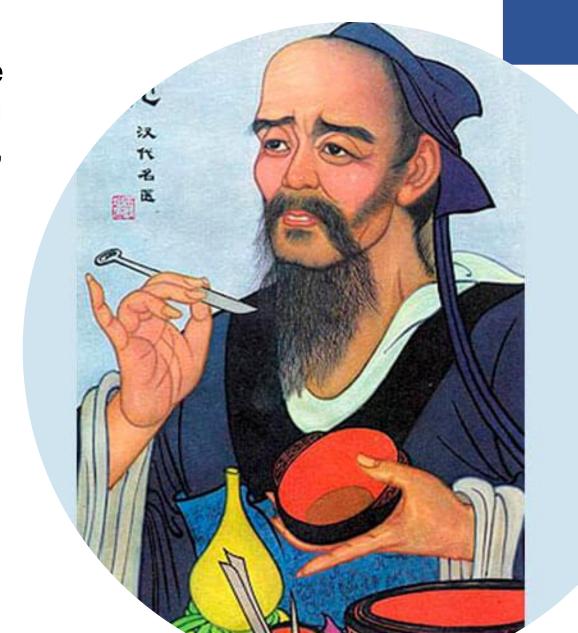

СОВРЕМЕННЫЙ ШОВНЫЙ МАТЕРИАЛ


Рязань, 2020

В папирусах Эдвина Смита и Эберса указывается, что древнеегипетские жрецы дифференцировали раны, применяя для неглубоких прообраз пластыря, а значительные раневые дефекты ушивали с помощью медной иглы и хлопковой нити.

В Древней Индии использовали оригинальный способ соединения раны с помощью широких челюстей гигантских чёрных муравьев: после того, как муравей сжимал края раны своими челюстями, его декапитировали и голову с челюстями удаляли после заживления раны.

Позже стали применять нити из конопли и джута



Во времена Древнего Китая в качестве шовного материала использовали льняные, шелковые, сухожильные нити, конский волос.

В 175 году нашей эры Гален впервые описал кетгут

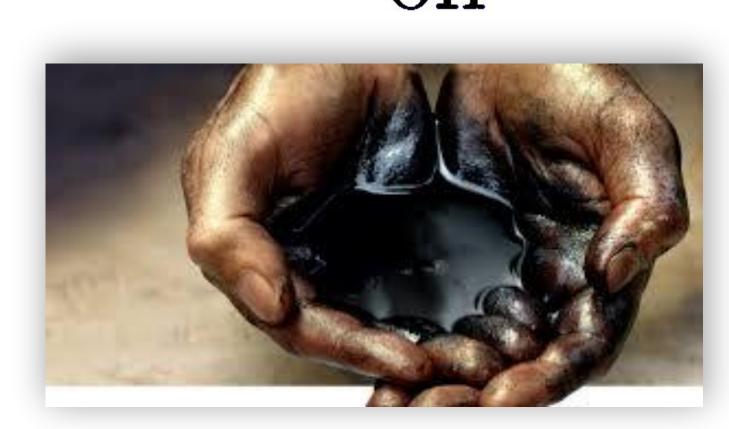
cat gut, с английского – «кишка кошки»
В Риме слово «кетгут» пошло от kitgut или kitstring – шнурок или нить для ранца римского легионера

Это нить из подслизистой оболочки кишки крупного рогатого скота

В настоящее время применение кетгута в медицинской практике стран Евросоюза, США и Японии запрещено!

2600 года до н.э.

История появления **шелковой** ткани начинается с 2600 года до н. э. и связана с одомашниванием в Китае тутового шелкопряда. Китайцы, умевшие хранить секреты, никому не открывали свою тайну, а любая попытка вывезти гусениц, бабочек или яйца шелкопряда за пределы страны каралась смертной казнью.

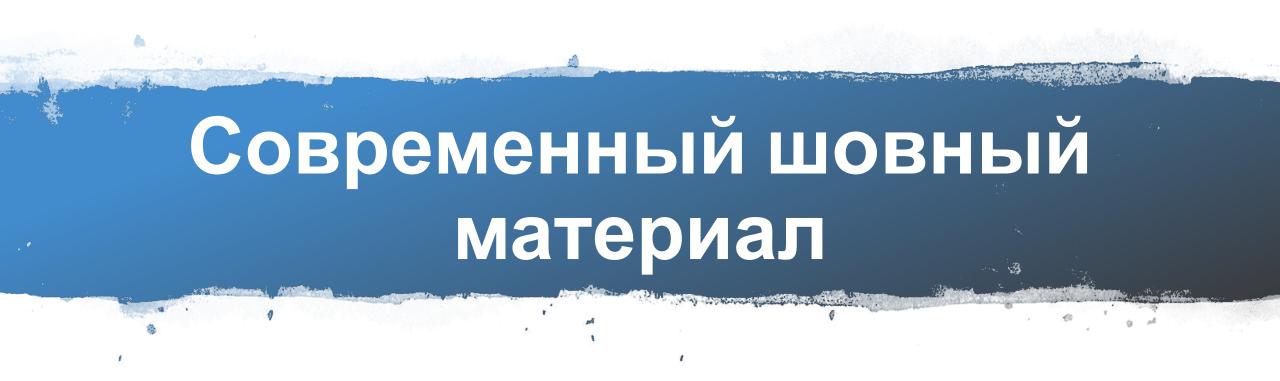

Применение шелка в хирургии описано в 1050 году нашей эры.

ЭРА СИНТЕТИЧЕСКИХ ШОВНЫХ

ЭРА СИПТЕТ...

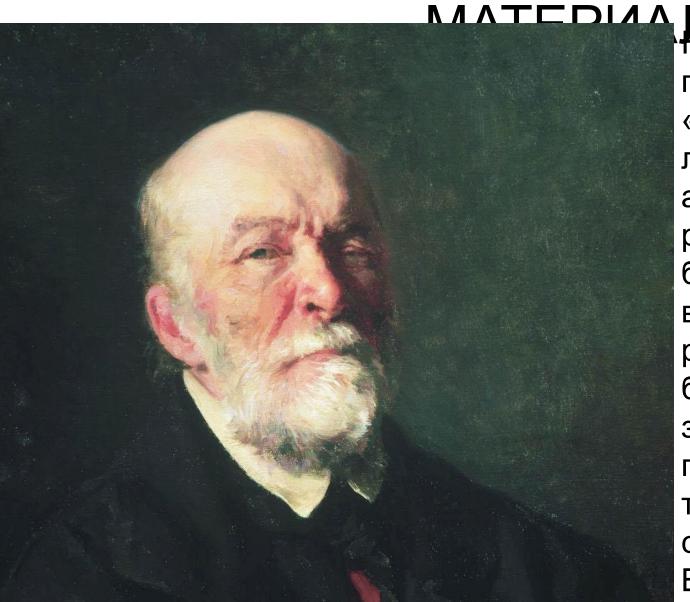
• В 1924 году Херман вима БРИАЛОВ [— СН2—СН—] попивиниловый спирт. как нейлон.

1930г. – два синтетических шовных материала – капрон (полиамид) и лавсан (полиэфир).


 1954г. – синтезирован полипропилен.
 В 1962 г. началось промышленное производство пропилена крупнейшими компаниями США.

 В 1972г. миру хирургии является рассасывающийся шовный материал на основе сополимера гликолевой и молочной кислот –

Хирургический шовный материал – это нить, применяемая в процессе оперативного вмешательства для соединения биологических тканей (краев раны, стенок органов и т. д.) с целью образования рубца или эпителизации.



Некачественный шовный материал может привести к различным осложнениям:

- □ нагноение;
- □ несостоятельность анастомоза;
- □ кровотечение;
- □ образование стриктур и т.д.

ТРЕБОВАНИЯ К ШОВНОМУ

МАТЕРІАЛ Пирогов в «Началах военнополевой хирургии» писал:

«...тот материал для шва самый лучший, который:

- а) причиняет наименьшее раздражение в прокольном канале,
- б) имеет гладкую поверхность,
- в) не впитывает в себя жидкости из раны, не разбухает, не переходит в брожение, не делается источником заражения,
- г) при достаточной плотности и тягучести тонок, не объемист и не склеивается со стенками прокола. Вот идеал шва».

ИДЕАЛЬНЫЙ ШОВНЫЙ

- 1. Биосовместимость (МАДПОЕТРИДП отсутствие токсического, аллергенного, канцерогенного и тератогенного воздействия на организм.
- 2. **Атравматичность нити** хорошее скольжение в тканях без «пилящего» эффекта.
- Отсутствие капиллярности и ф себя секрет из прокольного канал
- **4. Хорошие манипуляционные ха** гибкость нити.
- **5. Прочность**, сохраняющаяся до ф
 - 6. Надежность в узле (миник фиксации в узле).
 - 7. Возможность постепенной **би**
 - 8. Универсальность
 - 9. Стерильность.
 - 10. Технологичность

Идеального шовного материала, в полной мере отвечающего всем требованиям, не существует. Поэтому в зависимости от целей операции и свойств тканей, составляющих края раны, применяются нити разных видов.

КЛАССИФИКАЦИЯ ШОВНОГО МАТЕРИАЛА

Натуральные / синтетические

Монофиламентные / полифиламентные

Рассасывающиеся / нерассасывающиеся

•Синтетические

- •Абсорбция путем гидролиза (рассасывающиеся)
- •Отсутствие компонентов животного происхождения
- •Предсказуемые сроки абсорбции
- •Минимальная тканевая реакция

•Натуральные

- •Рассасывание путем воздействия протеолитических ферментов
- •Наличие компонентов животного происхождения
- •Непредсказуемые сроки рассасывания
- •Выраженная тканевая реакция: воспаление

Монофиламентные

Нить из единого цельного волокна с гладкой, ровной поверхностью (Монокрил, Пролен, Этилон, ПДС II и др.).

Полифиламентные

В сечении состоят из множества нитей:

Крученая

Такая нить получается путем скручивания нескольких филамент по оси (лён, крученый шелк, капрон и др.)

Плетеная

Нить получается путем плетения многих филамент по типу каната (Лавсан, Этибонд, Мерсилк, Дексон II и др.).

Комплексная нить (Псевдомонофиламентная)

Плетеная нить, пропитанная или покрытая полимерным материалом (Кардиоэрг, Викрил, Полисорб и др.).

	Монофиламентная	Полифиламентная
Атравматичность нити	Атравматична, но имеется «эффект резки сыра»	«Эффект пилы»
«Фитильный» эффект	Отсутствует	Имеется
Прочность и надёжность в узле	Необходимо вязать большее количество узлов	Более прочные на разрыв и надёжные в узле
Манипуляционные свойства	При протягивании через ткань проходит легче	Намного мягче и пластичнее
Биосовместимость	Меньший раздражающий эффект	Больший раздражающий эффект

Полигликолиды

• полисорб, биосин, монософ, викрил, дексон, максон

Рассасывающиеся

Полидиоксаноны

• полидиоксанон

Полиуретаны

• полиуретан

Естественные

• кетгут, коллаген, шёлк

Короткого срока рассасывания. Биологическая прочность — 7-10 дней, срок полного рассасывания — 40-45 дней (нити из производных полигликолевой кислоты).

Среднего срока рассасывания. Биологическая прочность — 21-28 дней, срок полного рассасывания 60-90 дней.

Длительного срока рассасывания. Биологическая прочность плетеных нитей — 40-50 дней, срок полного рассасывания 180-210 дней (нити из полигликоната или полидиоксанона).

Полиэфиры

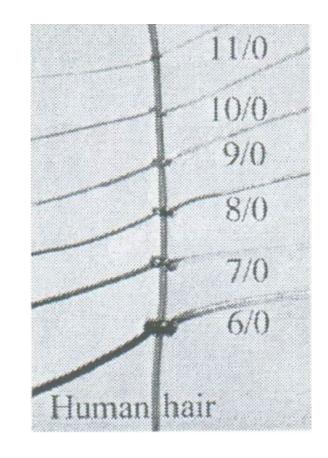
• лавсан, мерсилен, этибонд

Фторполимеры

е гор-тэкс, пронова

Металлы

• металлическая проволока, скобки


ерассасывающиес

Полипропилены

• суржипро, пролен, суржилен

Классификация шовного материала по толщине

Условный номер, USP	Метрический размер,ЕР	Диаметр, мм
6/0	0,7	0,07-0,099
5/0	1	0,10-0,149
4/0	1,5	0,15-0,199
3/0	2	0,20-0,249
2/0	3	0,30-0,339
0	3,5	0,35-0,399
1	4	0,40-0,499
2	5	0,50-0,599
3,4	6	0,60-0,699
5	7	0,70-0,799
6	8	0,80-0,899
7	9	0,90-0,999
8	10	1,00-1,099

The United States Pharmacopeia (USP)

The European Pharmacopeia (EP)

КЕТГУТ

Состоит из обработанного и очищенного на 98% коллагена, получаемого из подслизистой оболочки кишечника овец и крупного рогатого скота.

<u>Полное рассасывание</u>

70-90 дней

Проблемы:

- недостаточно прочный;
- скорость рассасывания нити непредсказуемая: зависит от многих факторов;
- аллергические реакции;
- инфекционные осложнения;
- плохие манипуляционные свойства.

Биологическая прочность

Простой Хромированный 7-10 дней 15-20 дней

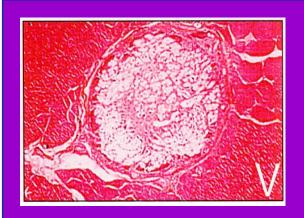
ШЁЛК

- Остается «золотым стандартом» манипуляционных качеств: мягкий, гибкий, прочный, позволяет вязать два узла.
- Чрезвычайно важно качество изготовления и наличие специальных технологий.
- В настоящее время сфера применения шелка весьма ограничена.
- Предсказуемость «поведения» шёлка далеко не идеальна.
- Вызывает менее выраженную реакцию организма по сравнению с кетгутом.
- Обладает выраженными сорбционными и фитильными свойствами.

Срок рассасывания 6-12 мес

ВИКРИЛ

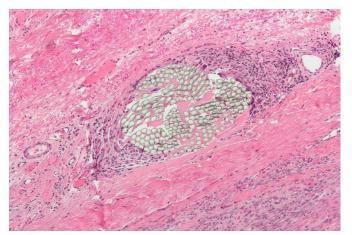
Прочность на разрыв:


- 14-й день 65%
- 21-й день 40% (нить 6/0)
- 28-й день 25%

Полное рассасывание

за 56-70 дней

- гораздо прочнее кетгута;
- обладает строго определенными, близкими к оптимальным сроками потери прочности и рассасывания;
- свободное прохождение через ткани;
- виден в тканях;
- легкое и надежное завязывание узлов;
- минимальная тканевая реакция.



ПРОЛЕН

- Биосовместимость
- ❖ Исключительно гладкая поверхность
- ❖ Отсутствие пилящих и фитильных свойств
- Контролируемое линейное растяжение
- Долговременная прочность (устойчивость к усталости)
- Сопротивляемость к повторяющейся нагрузке (пульсация)
- Минимальная тканевая реакция

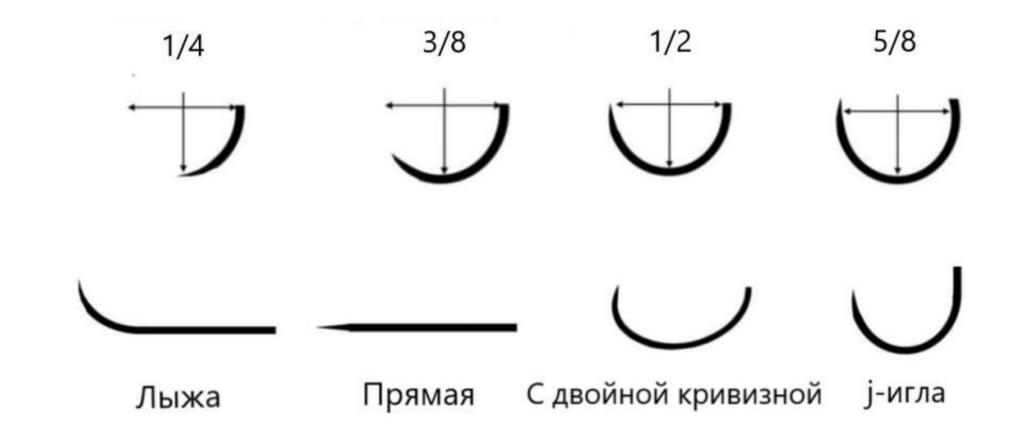
Но чем же плох пролен?

Навсегда остается в организме в качестве инородного тела

«Эффект резки сыра»

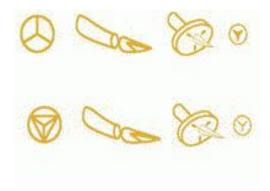
Каждая игла, независимо от ее вида, имеет три основные части:

- 1) острие;
- 2) тело;
- 3) ушко / обжатый конец.



Механическая

Атравматическая



Колющая игла

Режущая игла

Колюще-режущая

Тип игл

	Cu.	i i	70
А	_		Шпателевидная игла — в сечение иглы трапеция
В	8		Таперкат – круглая игла с трехгранным острием
С	•		Колющая игла – круглая игла с круглым острием
D	•		Режущая игла — игла обратный режущий трехгранник
E	•		Усиленная игла – квадратная игла с круглым острием
F	•		Уплощенная игла - круглая игла с уплощенным острием
7	⊖		Притупленная игла – круглая игла с круглым притупленным острием

Расшифровка обозначений на упаковке

Индивидуальная упаковка

СНК по оперативной хирургии РязГМУ

