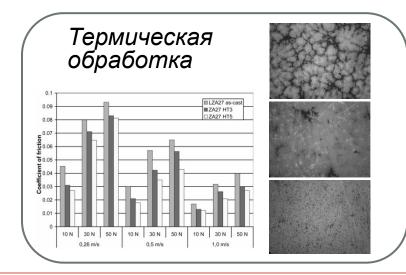
Евгений Сергеевич Прусов

канд. техн. наук, доцент кафедры «Технологии функциональных и конструкционных материалов» Владимирского государственного университета

Структура и свойства цинковых композиционных сплавов триботехнического назначения

Цинковые сплавы триботехнического назначения

	Zn	Al	Cu	Mg	Fe	Pb	Cd	Sn	Si			
Россия (ГОСТ 21438-95, 25140-93)												
ЦАМ 10-5	осн.	9-12	4.5-5.5	0.03-0.06	≤0.15	≤0.03	≤0.02	≤0.01	≤0.1			
ЦАМ 9-1,5	осн.	9-11	1-2	0.03-0.06	≤0.15	≤0.03	≤0.02	≤0.01	≤0.1			
ЦАМ 30-5	осн.	28.5-32.1	3.8-5.6	0.03-0.06	0.01-0.5	≤0.02	≤0.016	≤0.01	≤0.075			
США (АЅТМ В669)												
ZA12	осн.	10.8-11.5	0.5-1.2	0.02-0.03	≤0.065	≤0.005	≤0.006	≤0.002	-			
ZA27	осн.	25.5-28	2.0-2.5	0.012-0.0	≤0.072	≤0.005	≤0.006	≤0.002	-			
			Кит	гай (GB/T	1175)							
ZZnAl11Cu1Mg	OCH.	10.5-11.5	0.5-1.2	0.015-0.0	≤0.075	≤0.006	≤0.006	≤0.003	-			
ZZnAl11Cu5Mg	осн.	10-12	4.0-5.5	0.03-0.06	≤0.2	≤0.03	≤0.02	≤0.01	-			
ZZnAl27Cu2Mg	осн.	25-28	2.0-2.5	0.01-0.02	≤0.075	≤0.006	≤0.006	≤0.003	-			

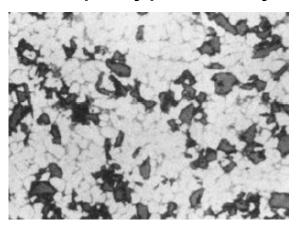

Основные направления повышения триботехнических свойств цинковых сплавов

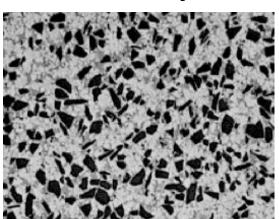
Поиск новых систем легирования

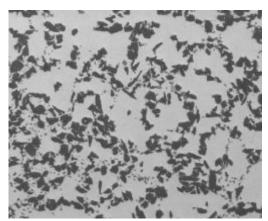
- Zn Al Sb
- Zn Al Si
- Zn Al Mn
- Zn Al Ni
- Zn Cu P
- Zn Al Cu Sn

Измельчение структуры

- Интенсификация теплоотвода при кристаллизации
- Ввод модифицирующих добавок (титан, таллий до 0,1%)



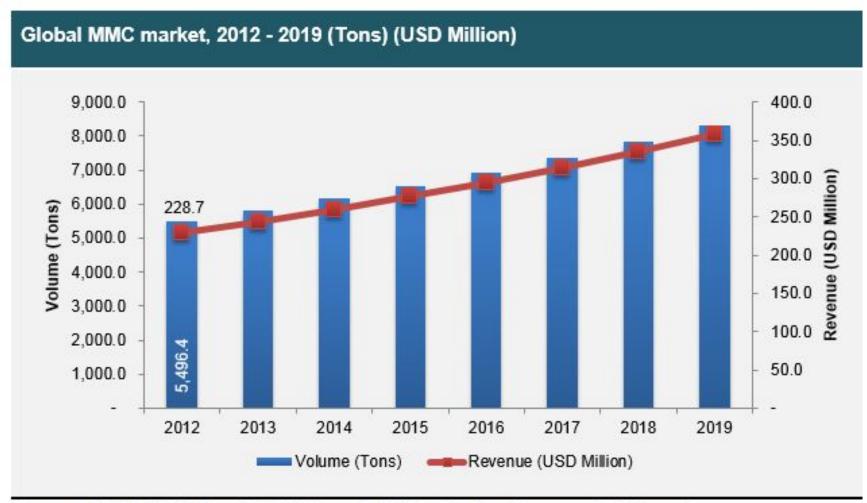

Реализация принципа армированной гетерофазной структуры (использование в качестве основы композиционных сплавов)


- Zn SiC
 Zn C
 Zn TiB₂
 Zn Ti SiC
 Zn TiC

Общая характеристика литых металломатричных композиционных сплавов

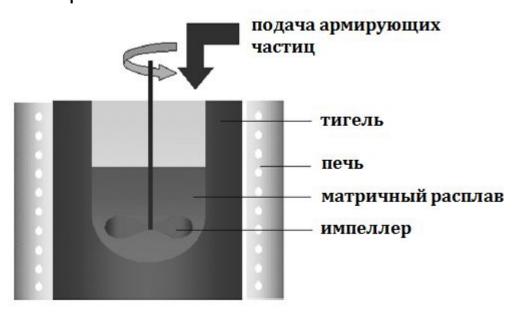
■ Металломатричные композиционные сплавы представляют собой особый класс гетерофазных материалов функционального и конструкционного назначения, состоящих из металлической основы (матрицы), армированной распределенными в ней тугоплавкими высокомодульными частицами эндогенного и экзогенного происхождения, не растворяющимися в металле матрицы при температурах получения и эксплуатации.

Основные области применения металломатричных композиционных сплавов


Область техники	Типовая номенклатура изделий из литых металлокомпозитов	Системы сплавов
Наземный транспорт	Безгильзовые блоки цилиндров, гильзы цилиндров, головки блоков, поршни, шатуны, толкатели клапанов, тормозные диски и барабаны, суппорта, приводные валы, подшипники скольжения, втулки, вкладыши	Al-SiC Al-Al ₂ O ₃ Al-графит Al-TiC Mg-SiC
Авиационная и ракетно-космическая техника	Роторы, рукава, лопатки вентиляторов и компрессоров, элементы фюзеляжа и шасси	Al-SiC Al-Al ₂ O ₃ Mg-C Mg-Al ₂ O ₃ Ti-SiC
Электротехника и электроника	Скользящие электромеханические контакты, теплоотводящие основания микросхем и корпусов электронных устройств, дугогасительные контакты	Al-графит Al-SiC Cu-графит Cu-Cr
Технологическое оборудование	Втулки, вкладыши, подшипники скольжения	AI -SiC AI - AI_2O_3 AI -графит Zn -SiC

Развитие объемов производства и применения металломатричных композитов (прогноз)

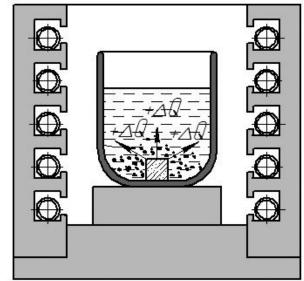
Source: ncn, USDOD, USCAR, Composites World, Composites UK, Primary Interviews, Transparency Market Research


Матричные материалы и армирующие компоненты композиционных сплавов

Материал	Системы	Армирующие
матрицы	матричных сплавов	компоненты
Алюминиевые сплавы	Al, Al-Si, Al-Mg, Al-Cu, Al-Si-Cu, Al-Si-Mg, Al-Si-Cu-Mg-Ni	$SiC,Al_2O_3,C,TiC,TiB_2,B_4C,AlN,$ $Si_3N_4,SiO_2,WC,VC,NbC,ZrC,$ $ZrO_2,ZrB_2,TaC,HfC,Fe,Al_3Ti,$ Al_3Ni,Al_3Zr
Магниевые сплавы	Mg, Mg-Al, Mg-Al-Zn, Mg-Zn-Zr, Mg-Li	SiC, Al ₂ O ₃ , MgO, Mg ₂ Si, TiC, TiB ₂ , AlN, TiN, Cu, Ni, Ti
Медные сплавы	Cu, Cu-Al, Cu-Al-Fe, Cu-Sn-Zn, Cu-Zn, Cu-Nb, Cu-Ti	C,Al ₂ O ₃ , ZrO ₂ ,WC,TiC,TiB ₂ , Nb ₃ Sn, NbC
Цинковые сплавы	Zn, Zn-Al, Zn-Al-Cu	C, SiC, Al ₂ O ₃ , TiC, TiB ₂ , ZrC, Al ₃ Ti, Ti, Ni

Жидкофазные способы получения металломатричных композиционных сплавов

Способы экзогенного армирования

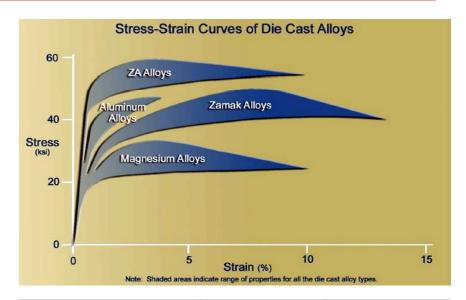

 Ввод готовых армирующих частиц в матричный расплав

Механическое замешивание

Способы эндогенного армирования

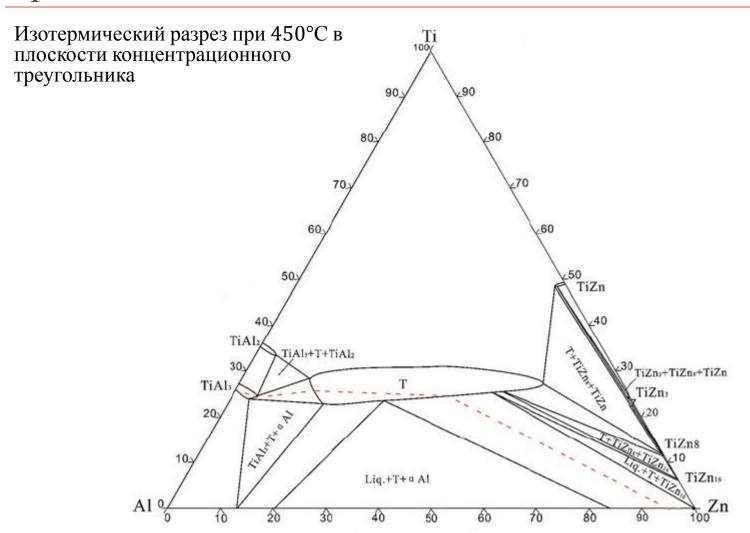
Формирование новых эндогенных фаз в результате реакций между компонентами-

Ввод порошковых брикетов


Цинк как основа композиционных сплавов

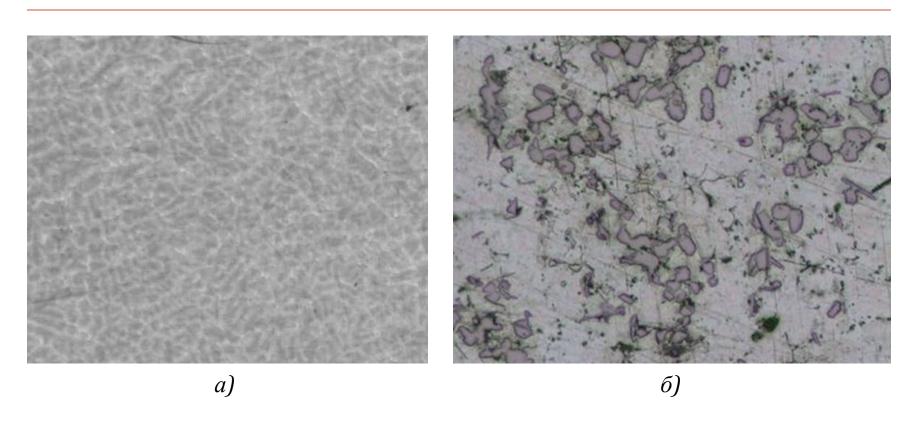
Преимущества цинка как матрицы композиционных сплавов:

- •технологичность в процессах жидкофазного совмещения с армирующей фазой;
- •хорошие литейные свойства (высокая жидкотекучесть и малая усадка);
- •низкая склонность к образованию пористости и трещин в отливках;
- •снижение энергозатрат при производстве (на 20-25% по сравнению с A1 и на 65-70% с бронзами)

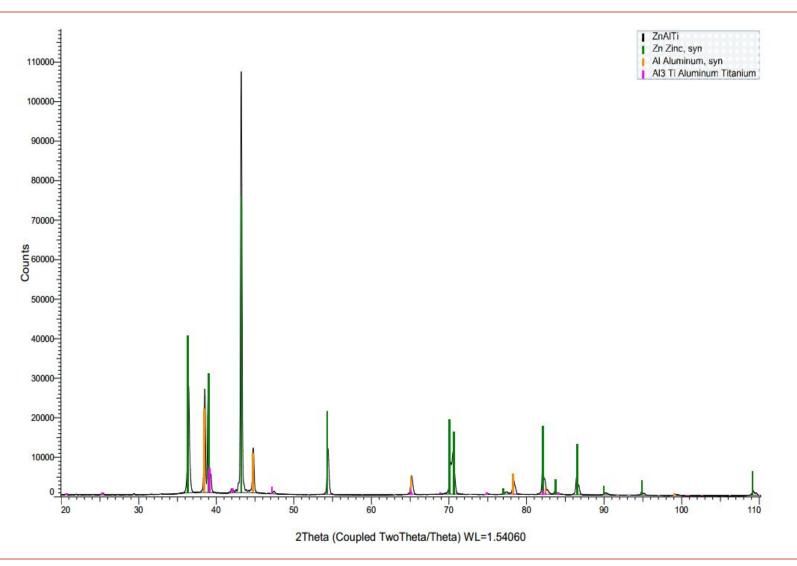

Высокоалюминиевые цинковые сплавы (HAl-Zn Alloys)

- ■Zn + 25..40 масс.% Al
- •ZA27, ZA35, ZA40

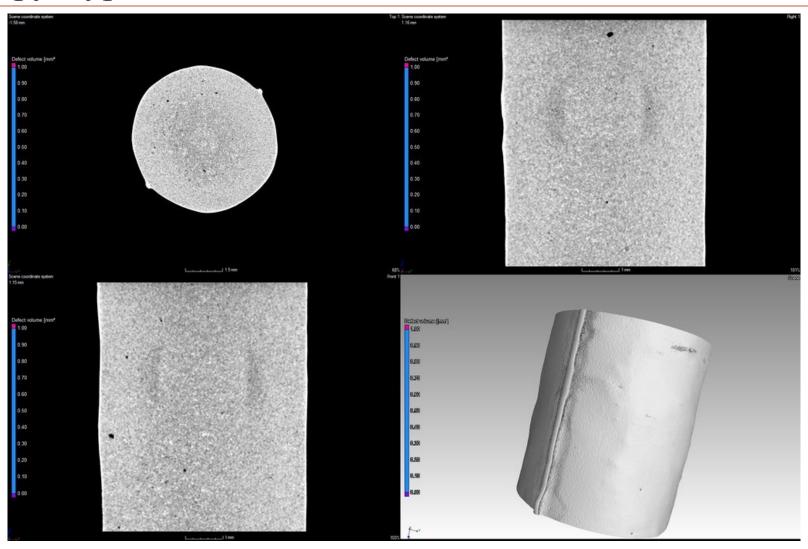
	ZA27	ZA35
ρ , Γ /cm ³	5,0	4,6
σB, ΜΠα	320-440	295-320
HB·10 ⁻¹ , МПа	95-100	110-120
λ , BT/M·K	126	н.д.
CTE, 1/°C	26·10-6	20,5·10 ⁻⁶


Композиционные сплавы на цинковой основе: тройная система Zn-Al-Ti

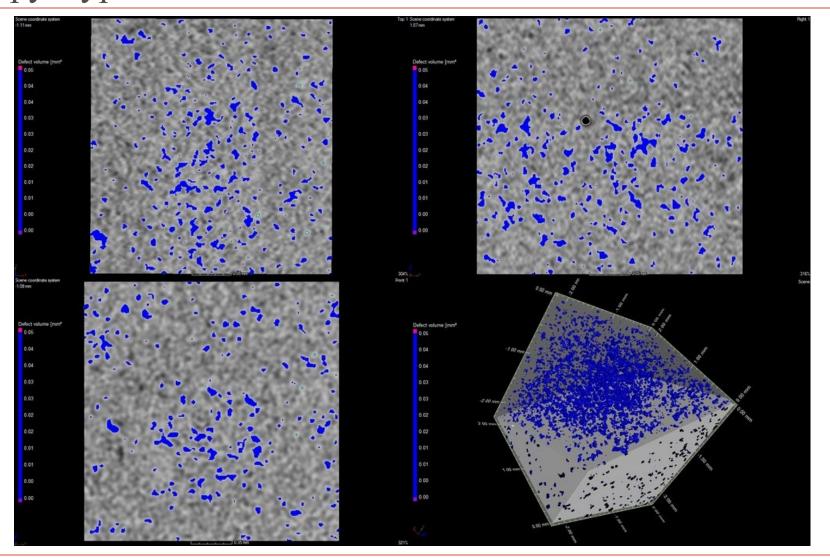
Технологическая схема получения цинковых композиционных сплавов


Приготовление Расплавление и композиционной рафинирование матрицы лигатуры Подготовка расплава Механическая активация порошковых Ввод композиционной компонентов шихты лигатуры в цинковый Брикетирование расплав порошковой смеси Ввод брикетов в алюминиевый расплав Выдержка для Выдержка до полного завершения реакций растворения лигатуры, взаимодействия перемешивание и Перемешивание и разливка разливка

Особенности структуры цинковых композиционных сплавов системы Zn-Al-Ti



Структура матричного сплава ZA27 *(а)* и композиционного сплава состава ZA27 + 5 масс.% Ті *(б)*; ×50


Фазовый состав сплавов Zn-Al-Ti

Результаты томографических исследований структуры сплавов системы Zn-Al-Ti

Результаты томографических исследований структуры сплавов системы Zn-Al-Ti

Исследование композиционных сплавов методом компьютерной томографии

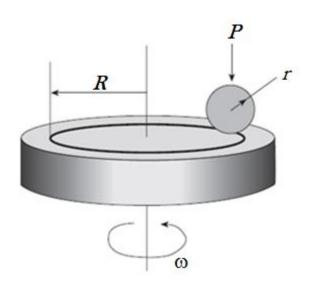
phoenix nanome|x

- максимальное напряжение: 180 кВ
- мощность рентгеновской трубки: 15
- различимость деталей до 200 нм
- детектор DXR250RT (30 кадров/с)

параметры сканирования для изучаемых образцов:

- □ размер вокселя: 8..10 мкм
- □ число проекций: 1000
- экспозиция на одну проекцию: 333 мс
- □ U/I: 160 kB / 30 MkA

Компьютерная томография: взаимодействие ВлГУ и Остек-СМТ


III International Conference on Computed Tomography (7-9 апреля 2015 г., Москва-Владимир)

- •более 50 организаций, в том числе МГУ, ВлГУ, МФТИ, МГТУ им. Баумана, КФУ, НИИграфит, General Electric, Schlumberger Inc., Volume Graphics и др.;
- •пленарная часть и три тематические секции.

Триботехнические испытания цинковых композиционных сплавов

- ☐ Tribometer (CSM Instruments):
- схема «шарик (ШХ15) диск (образец)»;
- линейная скорость ω = 40 см/с;
- длина пути трения 500 м;
- нагрузка P = 5 H; радиус R = 7 мм;
- испытания в условиях сухого трения и при трении со смазкой (Литол 24).

ASTM G99-959 / DIN 50324

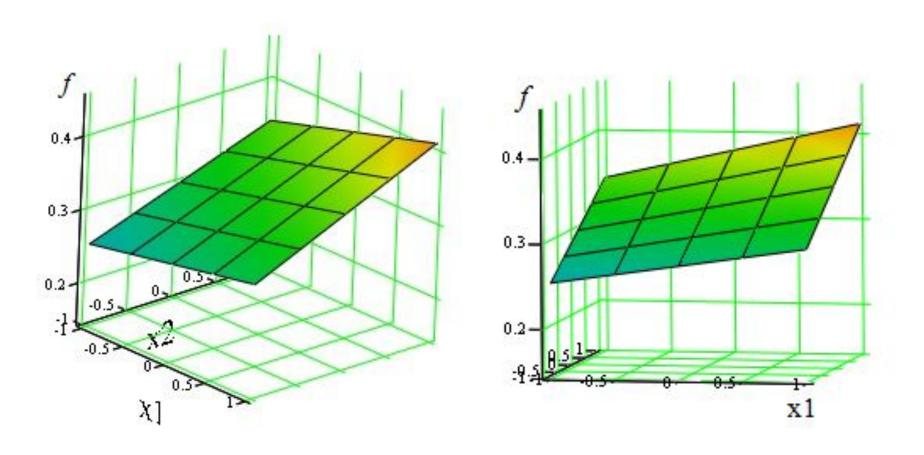
Общие данные для проведения экспериментов

 Задача: установление влияния долевого содержания алюминия и титана в композиционных сплавах Zn-Al-Ti на триботехнические свойства литых заготовок

Факторы		Уро	вни ва	рьиро	вания	Выходные величины			
		-1	0	+1	ΔX_i	Y_{1}	Y_2	Y_3	
Al, масс.%	X_1	25,0	32,5	40,0	7,5			A	
Ті, масс.%	X_2	0	2,5	5	2,5	$\mu_{ m cyx}$	$\mu_{_{\mathrm{CM}}}$	Δm	
Модель		$Y_i = b$	$p_0 + b_1 X$	$a_1 + b_2 X$	$a_2 + b_{12} X_1 X_2$	$X_2 \{Y_i = X_i\}$	Y([%Al],[%	∕₀Ti])}	

- Тип плана: полный факторный эксперимент с варьированием факторов на двух уровнях
- Количество параллельных опытов:три

Матрица планирования $\Pi\Phi \ni 2^2$


		Упра	авляем	ые факто	ры	Выходные параметры \overline{Y}_{ij}					
№	H	Кодов	soe	Натура	альное						
опыта	значение		значение			(отклик Y_{ij})					
	X_1	X_2	X_1X_2	[%A1]	[%Ti]	Y_{j1}	Y_{j2}	Y_{j3}			
1	-	-	+	25,0	0	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	•••		
2	+	-	-	40,0	0	<i>Y</i> ₂₁	Y_{22}	Y_{23}	•••		
3	-	+	-	25,0	5,0	<i>Y</i> ₃₁	Y_{32}	Y_{33}	•••		
4	+	+	+	40,0	5,0	<i>Y</i> ₄₁	Y_{42}	Y_{43}			
5	0	0	0	32,5	2,5	<i>Y</i> ₅₁	Y ₅₂	Y ₅₃	• • •		

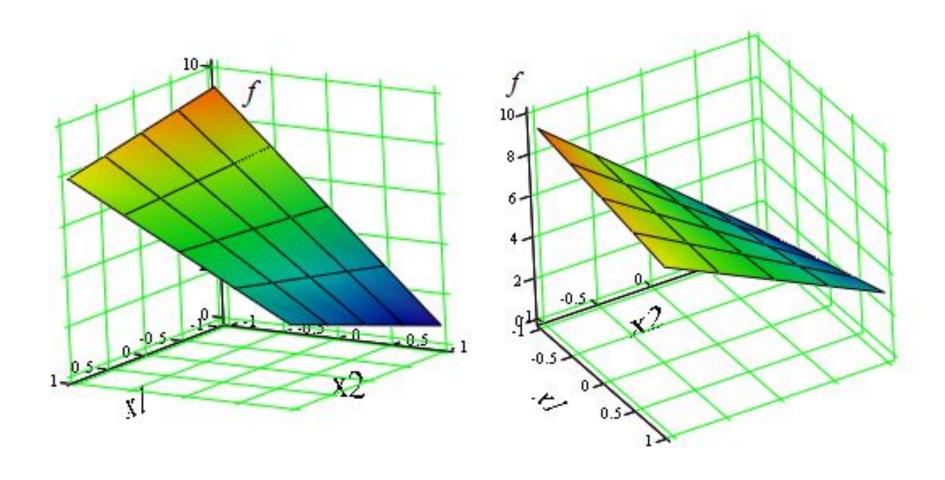
Испытания в условиях сухого трения

	7	лран	вляемы	е факто	Коэффициент				
№	Кодовое			Натура	альное	сухого трения			
опыта	значение		значение		(отклик μ_{ii})				
	X_1	X_2	$X_I X_2$	[%Al] [%Ti]		μ_{i1}	μ_{i2}	μ_{i3}^{s}	$\overline{\mu}_{ij}$
1	-	-	+	25,0	0	0,254	0,258	0,251	0,254
2	+	-	-	40,0	0	0,297	0,293	0,303	0,298
3	-	+	-	25,0	5,0	0,345	0,347	0,341	0,345
4	+	+	+	40,0	5,0	0,419	0,407	0,412	0,413
5	0	0	0	32,5	2,5	0,371	0,363	0,368	0,367

$$y = 0.3275 + 0.028 \cdot x_1 + 0.0515 \cdot x_2 + 0.006 \cdot x_1 x_2$$

$$\mu = 0.18077 + 0.00293 \cdot Al + 0.0102 \cdot Ti + 0.00032 \cdot Al \cdot Ti$$

Коэффициент сухого трения



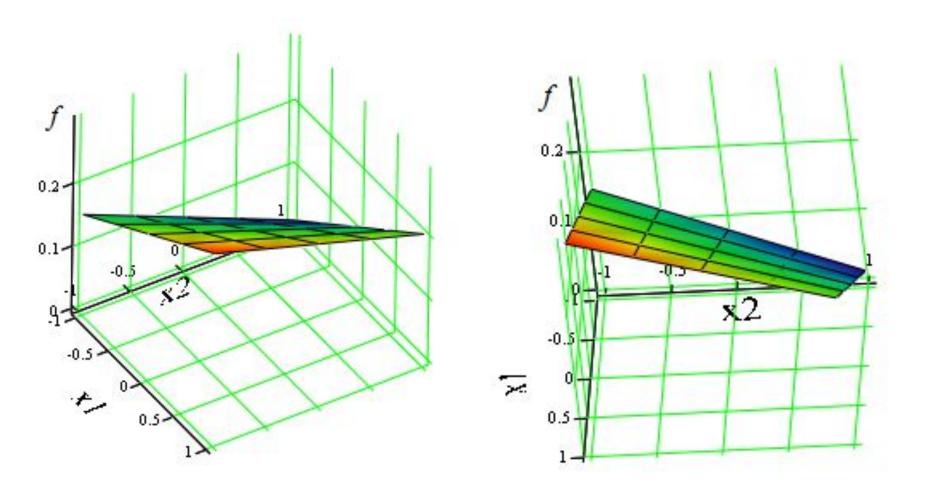
Потеря массы образцов при испытании Δm , мг

	У	прав	ляемы	е факто	оры	Поторя мосом сброино ме				
№	Кодовое Натуральное				альное	Потеря массы образца, мг				
опыта	3	начен	ние	значение		(отклик Δm_{ij})				
	X_1	X_2	$X_I X_2$	[%A1]	[%Ti]	Δm_{i1}	Δm_{j2}	Δm_{i3}	$\Delta \overline{m}_{ij}$	
1	-	-	+	25,0	0	9,5	9,1	9,4	9,3	
2	+	-	-	40,0	0	8,2	7,6	7,8	7,9	
3	-	+	-	25,0	5,0	0,7	1,0	0,8	0,8	
4	+	+	+	40,0	5,0	3,1	3,2	3,0	3,1	
5	0	0	0	32,5	2,5	5,6	5,6	5,8	5,7	

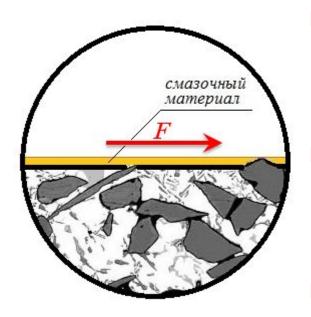
$$y = 5,275 + 0,225 \cdot x_1 - 3,325 \cdot x_2 + 0,925 \cdot x_1 x_2$$

$$\Delta m = 11,6063 - 0,0925 \cdot Al - 2,9225 \cdot Ti + 0,049 \cdot Al \cdot Ti$$

Потеря массы образцов при испытании Δm , мг



Испытания в условиях трения со смазкой


		Управ	вляемы	е факто	Гозффиционт троича					
№	Кодовое			Натура	альное	Коэффициент трения				
опыта	значение			знач	ение	(отклик μ_{ij})				
	X_1	X_2	$X_I X_2$	[%A1]	[%Ti]	μ_{i1}	μ_{i2}	μ_{i3}	$\overline{\mu}_{ij}$	
1	-	-	+	25,0	0	0,172	0,168	0,175	0,172	
2	+	-	-	40,0	0	0,196	0,195	0,192	0,194	
3	-	+	-	25,0	5,0	0,124	0,123	0,121	0,123	
4	+	+	+	40,0	5,0	0,183	0,186	0,185	0,185	
5	0	0	0	32,5	2,5	0,158	0,157	0,157	0,157	

$$y = 0.173 + 0.102 \cdot x_1 - 0.076 \cdot x_2 + 0.055 \cdot x_1 x_2$$

$$\mu = -0.0945 + 0.00987 \cdot Al - 0.0404 \cdot Ti + 0.00053 \cdot Al \cdot Ti$$

Коэффициент трения со смазкой

Современные представления о трибологическом поведении композиционных сплавов

- В соответствии с принципом Шарпи (1897), дисперсные частицы армирующей фазы выполняют роль несущих элементов, расположенных в пластичной металлической матрице
- Армирование частицами создает благоприятные условия для удержания смазки, переводя работу подвижного трибосопряжения из режима граничного трения в жидкостный или полужидкостный
- В процессе трения возможно образование «экранирующих пленок» из матричного сплава, покрывающих армирующие частицы, что предотвращает возникновение непосредственного контакта между частицами и материалом контртела

Владимирский государственный университет им. А.Г. и Н.Г. Столетовых Кафедра «Технологии функциональных и конструкционных материалов»

Спасибо за внимание!

600000, Владимир, ул. Горького, 87

e-mail: eprusov@mail.ru

+7 4922 47 98 21

