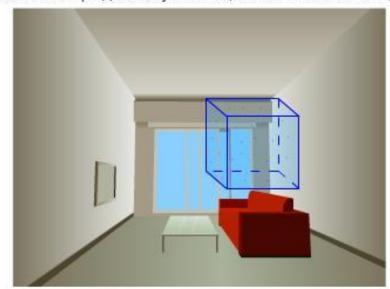


2.6. Влажность воздуха

Окружающая нас атмосфера из-за постоянного испарения воды с поверхности водоемов и суши всегда содержит в себе водяные пары. Количество пара, содержащегося в атмосфере, играет очень важную роль для жизни на Земле, в том числе и для самочувствия человека. Если в воздухе содержится мало водяных паров, то это создает чувство сухости во рту, одежда «электризуется» и липнет к телу. Если же пар, содержащийся в воздухе, наоборот, почти насыщен, то при понижении температуры начинается конденсация пара, выпадают атмосферные осадки в виде росы или туманов.



Рисунок 2.12. Выпадение тумана



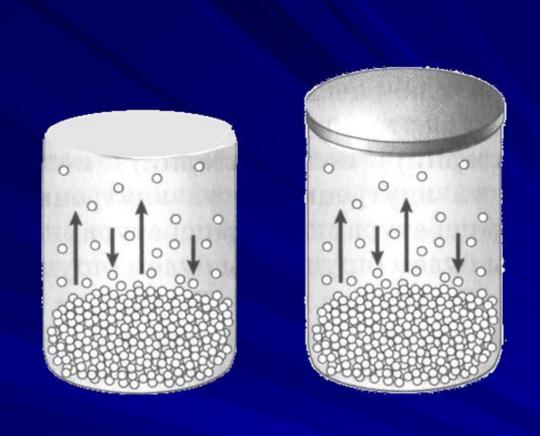
2.6. Влажность воздуха

Содержание водяного пара в воздухе — важная характеристика погоды и климата. Чем выше температура воздуха, тем больше в нем может быть пара. Так, при +20 °C один кубический метр воздуха может содержать 17 граммов водяного пара, при -20 °C — всего один грамм. В зависимости от количества паров, находящихся при данной температуре в атмосфере, воздух бывает различной степени влажности.

Влажность воздуха характеризуется несколькими показателями.

Абсолютная влажность (от лат. «absolut» — «полный») **ρ** показывает, сколько граммов водяного пара содержится в воздухе объемом 1 м³ при данных условиях, то есть плотность водяного пара.

Модель 2.22. Содержание водяного пара в воздухе



Если количество молекул, покидающих жидкость, равно количеству молекул, возвращающихся в жидкость, то говорят, что наступило динамическое равновесие между жидкостью и ее паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется *насыщенным*. Абсолютная влаженость воздуха р показывает плотность водяного Относительной влажностью воздуха ф называют отношение абсолютной влажности воздуха ρ к плотности ρ_{Ω} насыщенного водяного пара при той же температуре, выраженное в процентах:

10. Давление насыщенного водяного пара (мм рт. ст.) н его плотность (Γ/M^3 , или 10^{-3} кг/ M^3)

Температу- ра, °С	Давление	Плотность	Температу- ра, °С	Давление	Плотности		
1	4,9	5,2	11	9,8	10,0		
2	5,3	5,6	12	10,5	10,7		
3	3 5,7 6,0		13	11,2	11,4		
4	6,1	6,4	14	12,0	12,1		
5	6,6	6,8	15	12,8	12,8		
6	7,0	7,3	16	13,6	13,6		
7	7,5	7,8	17	14,5	14,5		
8	8 8,0 8,3		18	15,4			
9			19	16,5	16,3		
10	9,2	9,4	20	17,5	17,3		

$$\varphi = \frac{\rho}{\rho_0} \cdot 100 \%$$

$$t = 18^{\circ}C \qquad p_0 = 15,4 \frac{2}{M^3}$$

$$\varphi = \frac{7,7}{15,4} \cdot 100\% = 50\%$$
Лукашик №1154, 1157

1154. Какова абсолютная влажность воздуха, который в объеме 20 м³ содержит 100 г влаги?

Дано:

$$V = 20 \text{ M}^3$$

m=100r

Решение:

$$\rho = \frac{m}{V}$$

$$\rho = \frac{100\Gamma}{20M^3} = 5\frac{\Gamma}{M^3} = 0,005\frac{K\Gamma}{M^3}$$

2.6. Влажность воздуха

Например, относительная влажность равна 70 %. Это значит, что воздух содержит 70 % того водяного пара, которое он может содержать при данной температуре. Человек чувствует себя хорошо при относительной влажность 40–60 %. Отклонение от нормы вызывает ощущение дискомфорта.

Воздух в природе не бывает без водяных паров, в нем всегда находится какое-то их количество. Нет на Земле места, где была бы зарегистрирована нулевая относительная влажность. Наибольшая относительная влажность воздуха — 100 % — при тумане.

 Пользуясь таблицей «Давление насыщенного водяного пара и его плотность», определите плотность насыщенного пара при температуре 20 °C.

2. Используя полученный ответ, рассчитайте относительную влажность воздуха при температуре 20 °C, если абсолютная влажность при той же температуре равна $9.2 \, \frac{\Gamma}{M^3}$.

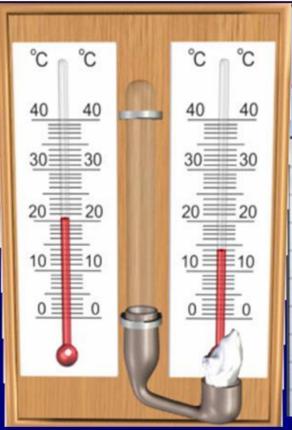
Модель 2.23. Определение относительной влажности воздуха

назад

2.6. Влажность воздуха

Если влажный воздух охлаждать, то при некоторой температуре находящийся в нем пар станет насыщенным. При дальнейшем охлаждении водяной пар начнет конденсироваться, выпадает роса, образуется туман.

Температура, при которой водяной пар, находящийся в воздухе, становится насыщенным, называется **точкой росы**. Точка росы также характеризует влажность воздуха.


°C	Проверить!	
	проворить:	

Модель 2.24. Определение точки росы

назад 1 2 3 4 5 6 7

IICHXPOMETP

Психрометр Августа - это прибор, предназначенный для измерения относительной влажности воздуха. Она определяется по разнице показаний двух термометров, один из которых обмотан мокрой тканью. Испаряющаяся из ткани вода, охлаждает этот термометр. Чем больше относительная влажность воздуха, тем меньше разница показаний.

Показание	Pasi			і сухого етров, °С		ioro
сухого термометра,	0	- 1	2	3	4	5
°C		Относі	ительная	я влажно	ость, %	
15	100	90	80	71	61	52
16	100	90	81	71	62	54
17	100	90	81	72	64	55
18	100	91	82	73	65	56
19	100	91	82	74	65	58
20	100	91	83	74	66	59
21	100	91	83	75	67	60
22	100	92	83	76	68	61
23	100	92	84	76	69	61
24	100	92	84	77	69	62

2.6. Влажность воздуха

Рассмотрим теперь устройство и принцип действия **психрометра**. Он состоит из двух термометров. Один из них (сухой) показывает температуру воздуха, а другой (влажный) — температуру ткани, смоченной водой. С поверхности влажной ткани происходит испарение воды, в результате ее температура понижается. Скорость испарения зависит от температуры и относительной влажности воздуха. Чем меньше паров в воздухе, тем интенсивнее идет процесс испарения и тем ниже температура влажного термометра. С помощью специальной таблицы, называемой психометрической, по разности показаний сухого и влажного термометров определяют относительную влажность воздуха.

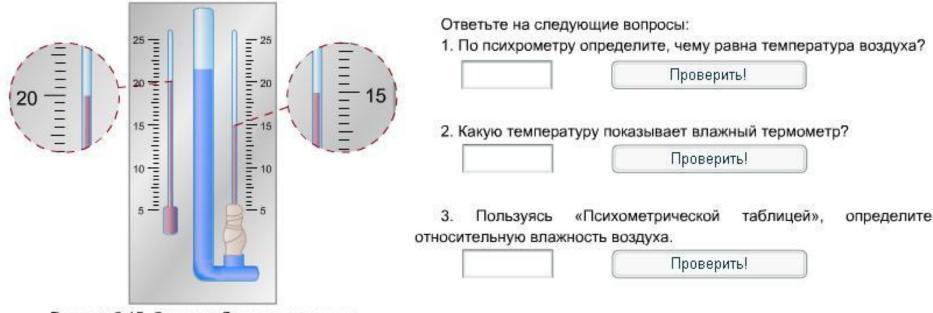


Рисунок 2.15. Схема работы психрометра

1167. Влажный термометр психрометра показывает температуру 14 °C, а сухой 18 °C. Каковы относительная влажность и давление водяного пара?

Продолжение

Показания сухого			Разн	ость пок	сазаний (сухого и	влажног	о термом	иетров в	град		
термометра,	0	1	2	3	4	5	6	7	8	9	10	11
*C	Относительная влажность, %											
16	100	90	81	71	62	54	46	37	30	22	15	8
17	100	90	81	72	64	55	47	39	32	24	17	1
18	100	91	82	73	65	56	49	41	34	27	20	1
19	100	91	82	74	65	58	50	43	35	29	22	1
20	100	91	83	74	66	59	51	44	37	30	24	1
21	100	91	83	75	67	60	52	46	39	32	26	2
22	100	92	83	76	68	61	54	47	40	34	28	2
23	100	92	84	76	69	61	55	48	42	36	30	2
24	100	92	84	77	69	62	56	49	43	37	31	2
25	100	92	84	77	70	63	57	50	44	38	33	2
26	100	92	85	78	71	64	58	51	46	40	34	2
27	100	92	85	78	71	65	59	52	47	41	36	3
28	100	93	85	78	72	65	59	53	48	42	37	3
29	100	93	86	79	72	66	60	54	49	43	38	3
30	100	93	86	79	73	67	61	55	50	44	39	3

ПРАКТИЧЕСКАЯ РАБОТА

<u>Цель работы</u>: определите, сколько воды в виде пара содержится в воздухе вашего классного помещения

1163. На море при температуре воздуха 25 0 C относительная влажность равна 95%. При какой температуре можно ожидать появление тумана? 1164. Вечером при температуре воздуха 2 0 C относительная влажность равна 60%. Выпадет ли ночью иней, если температура воздуха снизится до -3 0 C; до -4 0 C; до -5 0 C?

Таблица10

Таблица11

1163. На море при температуре воздуха 25 °C относительная влажность равна 95%.

При какой температуре можно ожидать появление тумана?

Дано:

$$\rho_0 = 23 \frac{\Gamma}{\text{M}^3}$$

$$t_2 = ?$$

Решение:

$$\varphi = \frac{\rho}{\rho_0} \cdot 100\%$$

$$\frac{\varphi}{100\%} = \frac{\rho}{\rho_0}$$

$$\frac{\varphi}{100\%} \cdot \rho_0 = \frac{\rho}{\rho_0} \cdot \rho_0$$

$$\frac{\varphi \cdot \rho_0}{100\%} = \rho$$

$$\rho = \frac{\varphi \cdot \rho_0}{100\%}$$

$$\rho = \frac{95\% \cdot 23 \frac{\Gamma}{M^3}}{100\%} = 21,85 \frac{\Gamma}{M^3}$$

из таблицы видно, что

$$\rho_0 \approx 21.9 \frac{\Gamma}{M^3}$$
, если $t_2 = 24^{\circ}$ С

1164. Вечером при температуре воздуха 2 °С относительная влажность равна 60%. Выпадет ли ночью иней, если температура воздуха снизится до -3 °С;

Дано:

$$t_1 = 2^{\circ}C$$

 $\phi = 60\%$

$$\rho_0 = 5.6 \frac{\Gamma}{\text{M}^3}$$

$$t_2 = ?$$

Решение:

$$\varphi = \frac{\rho}{\rho_0} \cdot 100\%$$

$$\frac{\varphi}{100\%} = \frac{\rho}{\rho_0}$$

$$\rho = \frac{\varphi \cdot \rho_0}{100\%}$$

$$\rho = \frac{60\% \cdot 5.6 \frac{\Gamma}{M^3}}{100\%} = 3.36 \frac{\Gamma}{M^3}$$

из таблицы видно, что

$$ho_0 pprox 3.4 rac{\Gamma}{M^3}$$
 , если $t_2 \!\!pprox \!\!5^0 C$

Pycaков Владимир Николаевич roown@mail.ru