*

«Материаловедение в полиграфическом

Курс лекций для бакалавров направления 29.03.03

Теплофизические свойства полимеров

Теплофизические свойства - это тепловые явления, которые возникают в полимерах в ответ на изменение внешних температурных условий.

В дополнение к термомеханическим характеристикам: $\mathbf{T}_{\mathbf{n}\mathbf{A}}$, $\mathbf{T}_{\mathbf{c}}$, $\mathbf{T}_{\mathbf{x}\mathbf{p}}$, $\mathbf{T}_{\mathbf{T}}$ и $\mathbf{T}_{\mathbf{дестp}}$.

к теплофизическим свойствам относятся:

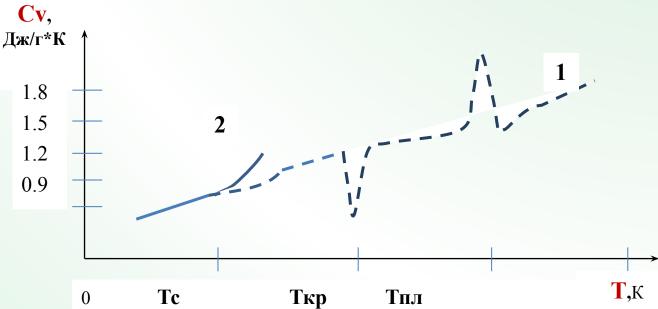
- Теплоемкость
- Теплопроводность
- Тепловое (термическое) расширение
- Теплостойкость.
- Температуропроводность и др.

Теплоемкость

Удельная теплоёмкость - это количество тепла, необходимое для нагрева единицы массы полимера на 1 градус, кДж/(кг*К). .

$$C_{p} = \left(\frac{dH}{dT}\right)_{V}$$

$$C_V = \left(\frac{dU}{dT}\right)_{P}$$


На молекулярном уровне теплоемкость отражает способность полимеров поглощать ту энергию, которая вносится в него и расходуется на тепловое движение всех структурных единиц.

$$\mathbf{C}_{\Sigma} = \mathbf{C}_{\text{pem}} + \mathbf{C}_{\text{бокгр}} + \mathbf{C}_{\text{конф}}$$

Фазовое Состояние и др. факторы

Су.

Влияние температуры на теплоемкость кристаллических (1) и аморфных (2) полимеров

• Теплоемкость **наполненных** полимеров **выше** и **меняется по правилу аддитивности**

$$C_{P} = C_{P,H} + \varphi (C_{P,H} - C_{P,\Pi})$$

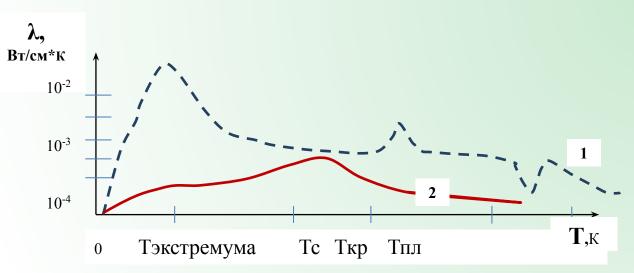
• Теплоемкость кристаллических полимеров выше, чем аморфных

• Теплоемкость полимеров выше теплоемкости металлов

Материал (полимеры)	Удельная теплоёмкость Ср, кДж/кг · град	Материал (металлы и наполнители)	Удельная теплоёмкость Ср, кДж/кг·град
Полиэтилен ПЭВД	2,1	Алюминий	0,91
Полипропилен	1,93	Медь	0,39
Поливинилхлорид	2,1	Сталь	0,47
Полистирол	1,3	Чугун	0,54
Полиамиды	2,1	Латунь	0,394
Политетрафторэтилен	1,05	Бронза	0,385
Полиэтилентерефталат	1,32	Углеволокно	5,44
Полиметилметакрилат	1,26	Цинк	0,38
Поликарбонат	1,17	Бетон	1,13
Винипласт	1,76	МЕЛ	0,82

Теплопроводность

Теплопроводность – это процесс *переноса тепла* от более нагретых частей тела к менее нагретым, приводящий *к выравниванию температур*.


$$\lambda = -\frac{dQ}{dT}$$

- Количество тепла ϑ , протекающего в единицу времени через единицу площади поверхности, перпендикулярной направлению потока тепла, при перепаде температур в 1 градус (Кельвин) на единицу длины в этом направлении (Вт/м·К).

Влияние температуры на теплопроводность

кристаллических (1) и аморфных (2) полимеров

Зависимость теплопроводности полимеров от молекулярной массы

Полимер			Поливинилхл орид ПВХ	Полистир ол ПС
М _{кр} , г/моль	1000	1000	12000	40000

Разветвления и боковые заместители в полимерах мешают передаче тепла между макромолекулами- теплопроводность снижается

№ п/п	Полимер	Структурное звено	Коэффициент теплопроводности, λ, (Вт/м °К)
1	ПЭВП высокой плотности	$-\text{CH}_2$ - CH_2 - $\frac{1}{n}$	0,38-0,47
2	ПП полипропилен	$ CH_2 CH_3$ CH_3	0,175
3	ПИП полиизопрен	$-\text{CH}_2-\text{C}=\text{CH}-\text{CH}_2\frac{1}{n}$ CH_3	0,13-0,16

• Теплопроводность у **сетчатых полимеров выше** по сравнению с линейными

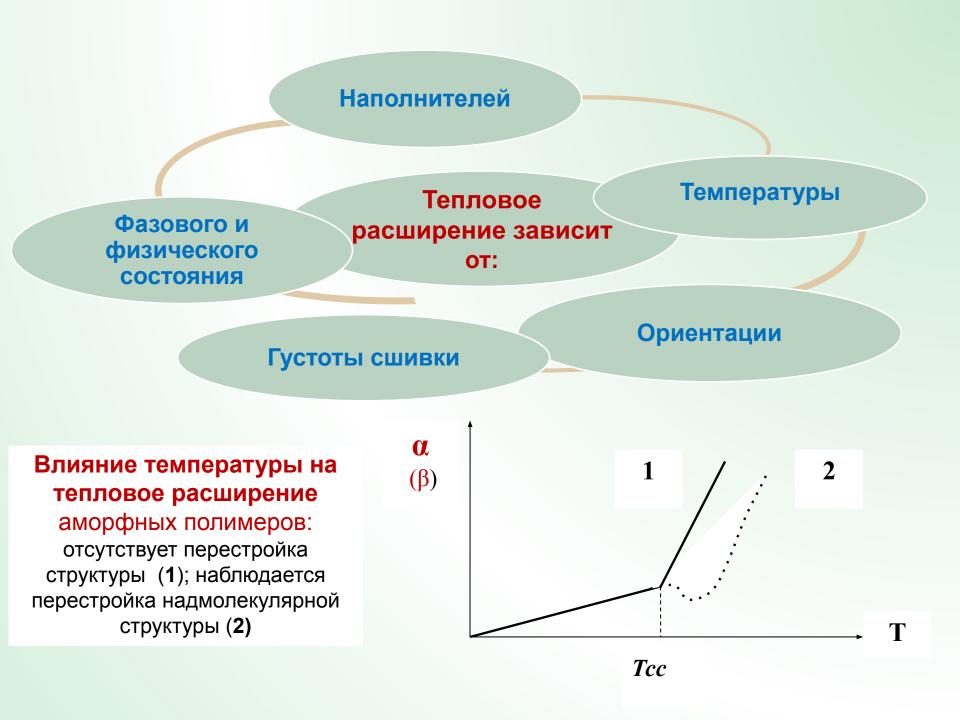
Полимерный	Коэффициент
материал	теплопроводности λ ,
	Вт/(м*К)
ПЭНП	0,32-0,36
ПЭВП	0,42-0,44
ПП	0,19-0,21
ПС	0,09-0,14
АБС-пл	0,12
ПВА	0,016-0,017
ПВХ	0,16
ЕФТП	0,2-0,3
ПА	0,38
ФТЄП	0,20
ПММА	0,19-0,2
ПК	0,31
Фенопласты	0,2-0,5
Аминопласты	0,28-0,34
Эпоксипласты	0,3-0,42
Мел	2,40
Углеволокно	102

• Теплопроводность кристаллических полимеров выше, чем аморфных

• Теплопроводность **наполненных** полимеров **выше**, чем у <u>не</u>наполненных

• Теплопроводность ориентированных полимеров анизотропна

$$\frac{3}{\lambda} = \frac{1}{\lambda_{II}} + \frac{2}{\lambda_{II}}$$


Тепловое расширение

При нагревании увеличивается амплитуда колебаний атомов, растет их смещение от равновесного положения. В итоге твердое тело расширяется, увеличиваются его размеры и объем.

Количественные характеристики теплового расширения:

- α термический коэффициент объемного расширения $\alpha = \left(\frac{1}{V_0}\right) \left(\frac{dV}{dT}\right)_p$, (K-1)
- β термический коэффициент линейного расширения $\beta = \left(\frac{1}{lo}\right) \left(\frac{dl}{dT}\right)_{p}$, (К-1).

Коэффициент теплового расширения (линейного, объемного) отражает изменение длины (объема) на единицу длины (объема) образца при изменении температуры на 1 градус и постоянном давлении

Полимерный	Коэффициент	
материал	Линейного	
	термического	
	расширения β*10 ⁵ , K ⁻¹	
ПЭНП	21-55	
ПЭВП	17-55	
ПП	11-18	
ПС	6-7	
АБС-пл	8-10	
ПВА	8-9	
ПВХ	6-8	
ПТФЭ	8-25	
ПА	12-30	
ФТЄП	8-13	
ПММА	7-12	
ПК	2-6	
Фенопласты	1,0-4,0	
Аминопласты	1,5-3,3	
Эпоксипласты	0,8-2,5	

- Тепловое расширение и усадка
- кристаллических полимеров
- выше, чем аморфных.

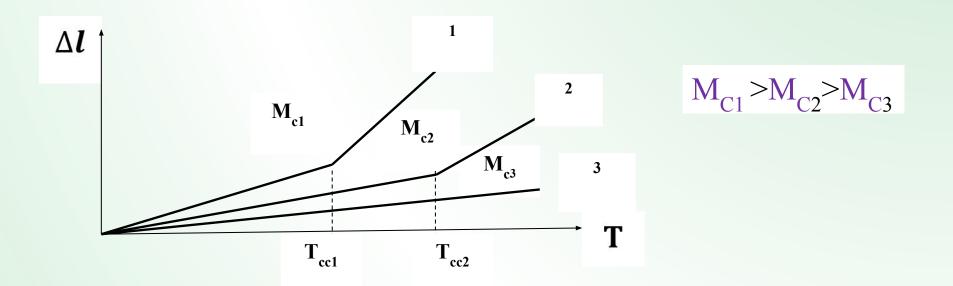
Объемное тепловое расширение чаще всего анизотропно и равно $\alpha = \beta_a + \beta_c + \beta_c$.

У изотропных тел
$$\alpha = 3\beta > 0$$
.

У кристаллических полимеров выше температуры кристаллизации $\mathbf{T}_{\mathbf{kp}}$ так же происходит скачок коэффициентов теплового расширения

•Тепловое расширение наполненных полимеров НИЖЕ, чем у ненаполненных

• **Наполнители:** мел, каолин, технический углерод (сажа), аэросил


• У полимеров, предварительно подвергнутых сильной ориентационной вытяжке, при повторном нагревании в направлении вытяжки может проявляться отрицательное значение линейного коэффициента теплового расширения. В этом направлении образец полимера даст усадку. На этом явлении основано действие упаковочных термоусадочных пленок.

Полимер	Степень усадки,%	Напряжение усадки, МПа	Температура усадки при упаковывании, ⁰ С	Температура сварки, ⁰ С
ПЭНП	15-50	0,3-3,5	120-150	150-200
ПП	70-80	2,0-4,0	150-230	175-200
ПВХ 50-70		1,0-2,0	110-155	135-175
ПС	40-60	0,7-4,0	130-160	120-150

• Тепловое расширение **сетчатых полимеров НИЖЕ** по сравнению с линейными.

Чем больше густота сшивки и меньше МС, тем **меньше гибкость и** тепловое расширение

Мс – молекулярная масса отрезков макромолекул между узлами сшивки

Тепловое расширение сетчатых полимеров с разной густотой сшивки и Mc

Барьерные, оптические и др. свойства полимерных материалов

Воздействие окружающей среды на упакованный товар :

- солнечный свет инициирует нежелательные реакции в продуктах;
- влага ускоряет развитие микроорганизмов, бактерий, грибков, разрушение продуктов (размокание, раскисание, растворение и т.д.);
- потеря влаги вызывает усыхание, уменьшение массы, изменение консистенции;
- кислород приводит к окислению (прогорклости) жиров, разрушению витаминов, активных веществ и т.п.;
- потеря кислорода изменяет цвет красного мяса, меняет процесс созревания сыра, ведет к развитию бактерий, гниению и др.;
- ароматические вещества из внешней среды приводят к приобретению продуктом стороннего запаха.

Способы устранения негативных явлений:

- упаковка с модифицированной газовой атмосферой;
- вакуумированная упаковка;
- газонаполненная упаковка;
- упаковка с контролируемой газовой атмосферой и др.

