
Светостабилизаторы

Спектры активации нестабилизированной полиэтиленовой пленки толщиной 50 мкм: 1 — поглощение при 1720 см-1 (образование карбонилов); 2 — поглощение при 400 нм (пожелтение)

Спектральная чувствительность полиэтилена низкой плотности (ПЭНП) и полипропилена (ПП). Поглощение измерено при 1720 см -1

Энергия излучения различных длин волн и энергии связей типичных групп в полимерах

Длина волны	Энергия		_	Энергия связи,
	ккал/Эйнштейн	кДж/Эйнштейн	Тип связи	кДж/моль
290	100	419	С-Н	380-420
300	95	398	C-C	340-350
320	90	375	C-0	320-380
350	81	339	C-Cl	300-340
400	71	300	C-N	320-330

¹ Эйнштейн = 1 моль фотонов = $6 * 10^{23}$ фотонов

Инициирование цепи

Гидропероксиды РООН

Карбоксильные соединения > С = О

Остатки катализатора (
$$Ti$$
,...) $\stackrel{\triangle .hv.Me^{2+}/Me^{3+}}{\longrightarrow}$ Свободные (P ', PO ', HO ', HO '...)

Комплексы с переносом заряда

Загрязнения воздуха

Рост цепи

$$P \cdot + O_2 \rightarrow PO_2$$

Разветвление цепи

POOH
$$\Delta_{,hv,Me^{2^+}/Me^{3^+}}$$
 PO + OH

POOH + PH
$$\Delta_{hv,Me^{2+}/Me^{3+}}$$
 PO + P + H₂O

POOH + POOH
$$\Delta_{,h\nu,Me^{2+}/Me^{3+}}$$
 PO₂ + PO + H₂O

$$.OH + BH \rightarrow H^{3}O + B.$$

Обрыв цепи

$$b. + b. \rightarrow b-b$$

$$P' + PO_2 \rightarrow POOP$$

$$PO_{2}$$
 + PO_{2} $\rightarrow P = O + POH$

$$BO^{5}$$
 + BO^{5} \rightarrow $BOOD + O^{5}$

1. Первичные реакции фотолиза

$$O_3$$
 \longrightarrow $O_2 + O$ $\lambda < 590 \text{ HM}$ O_2 \longrightarrow $O_2 + O$ $\lambda > 420 \text{ HM}$

2. Инициирование окисления полимера

3. Усиление за счет каталитического цикла

$$NO + PO_2$$
 \longrightarrow $NO_2 + PO$

После суммирования данных реакций и исключения идентичных значений с обеих сторон остается:

Спектральные данные и скорость образования свободных радикалов для потенциальных хромофоров в промышленном полипропилене

Хромофор	Приблизитель- ная концентра- ция, моль/л	Молекулярный коэффициент затухания, $\epsilon_{310ны}$, л/(моль см)	Квантовый выход	Скорость образования свободных радикалов (естественное атмосферное старение), моль/с
Гидропероксиды (третичные)	5·10 ⁻³ (волокна) 10 ⁻⁴ 5·10 ⁻⁴ (пленки)	0,4	1 (разложение)	~ 5-10-8
Кетоны: Кетоны в цепи Метилкетоны	< 1 · 10-3 < 1 · 10-3	10 10	0,07 (Норриш I) 0,01 и 0,08 (Норриш I и II)	< 1·10 ⁻⁸ < 1·10 ⁻⁹
Остатки катализа- тора, типа TiOCl ₂ , Ti(OBu) ₄	10-410-3	40-1300	~ 0,2	~ 5·10 ⁻⁸
Комплексы с перено- сом заряда РР О ₂			~ 0,2 (фото- окисление)	~ 4.10-11

1. Реакция по типу Норриш I (α-разрыв)

$$-CH_{2}-C \underset{\bigcirc{}}{\stackrel{R}{\sim}} \xrightarrow{hv} -CH_{2}-C \underset{\bigcirc{}}{\stackrel{R}{\sim}} \xrightarrow{} -CH_{2}^{*} + {^{*}}C \underset{\bigcirc{}}{\stackrel{R}{\sim}}$$

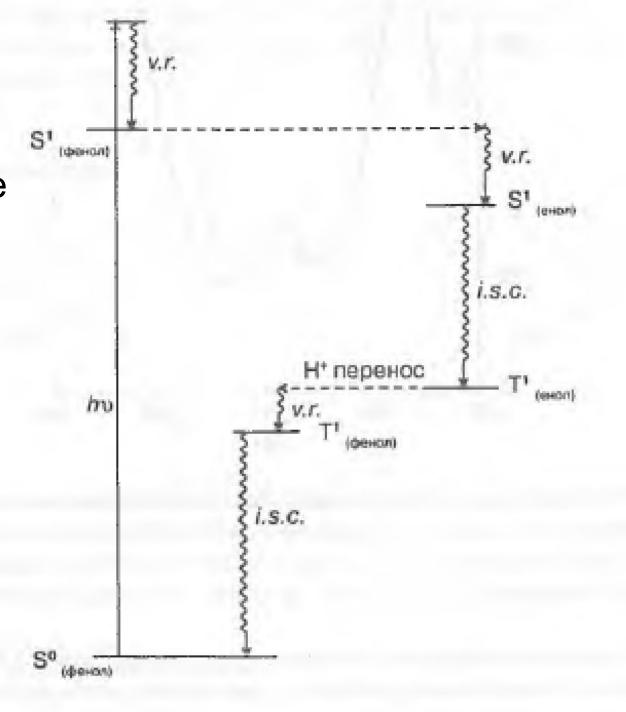
$$-CH_{2}-C \underset{\bigcirc{}}{\stackrel{*}{\sim}} + R^{*}$$

2. Реакция по типу Норриш II (β-разрыв)

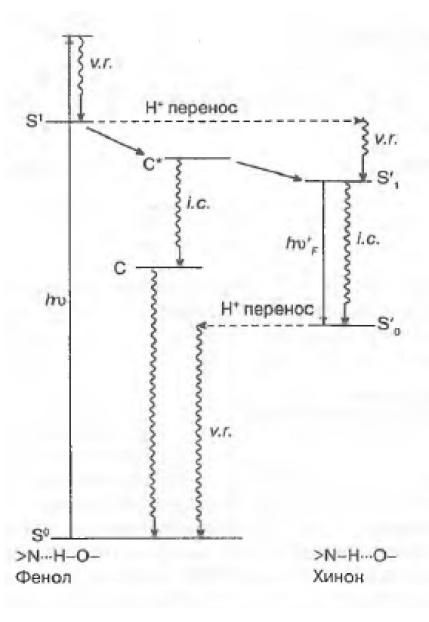
$$-CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{hv} -CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}-CH_{2}-CC_{0} \xrightarrow{R} + CH_{2}-CH_{2}$$

2-III. Основные реакции фотолиза карбонильных групп

Фотоизмеризация сопряженных карбонильных групп


Образование гидропероксидов ПП

Фотоокисление полипропропилена


Фотоокисление полистирола (ПС), вызванное ароматическим кетоном

Фотолиз гидропероксида полистирола и последующие реакции

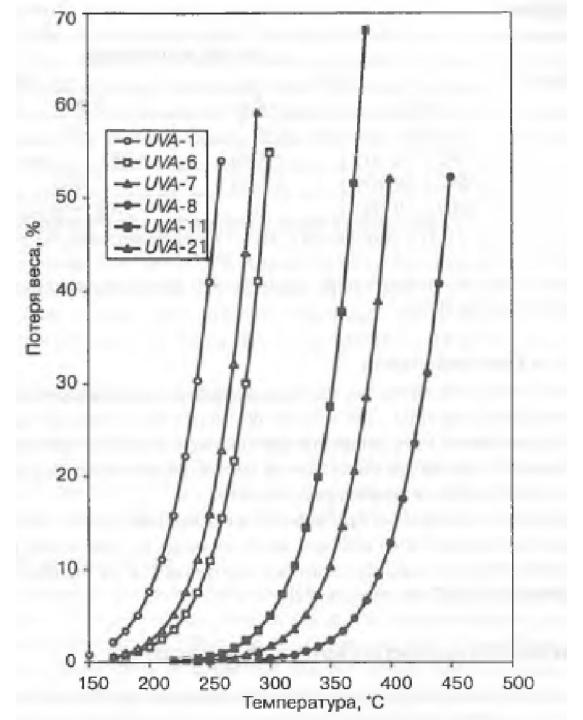
Внутримолекулярный перенос протона в 2-гидроксибензофеноне

Мезомерные и таутомерные формы 2гидроксифенилбензотриазолов

1. Мезомерные формы

Таутомерные формы (только в возбужденном состоянии)

Тушение возбужденных состояний


Поглощение свободных радикалов HALS по циклическому механизму

Термические и фотохимические реакции нитроксильных радикалов

1. Гидроксиламины

2. Эфиры гидроксиламинов

Реакции гидроксиламинов и простых эфиров гидроксиламинов

Летучесть различных УФ-абсорберов. Измерение с помощью динамической термогравиметрии на воздухе, скорость нагрева 20 С/мин

Совместимость светостабилизаторов с гомополимером ПЭНП и сополимеров СЭВА

	Дни до выцветания					
Светостабилизатор	пэнп		СЭВА			
	0,6%	1,0%	0,6%	1,0%		
HALS-1	< 1	< 0,1	75	50		
HALS-2	> 4800 (~13 лет)	> 4800	> 3900 (~11 лет)	> 3900		
HALS-3	> 4600 (~12 лет)	> 4600	> 3900	> 3900		
UVA-19	> 3800 (~10 лет)	50	> 3700 (~10 лет)	> 3700		

Гомополимер ПЭНП; сополимер СЭВА: 18% винилацетата; концентрация светостабилизатора в %масс. Визуальная оценка выцветания на пленках толщиной 0,5 мм, полученных прессованием; хранение при комнатной температуре.